

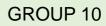
MOST EFFICIENT PARTY

SUBJECT REPORT

Anna Kristina Schjerbeck Manja Nørrekær Lund Oskar Gram Nielsen s161709 s173803 s173802

27th of June 2021

TABLE OF CONTENT


DESIGN CRITERIA	3
INTRODUCTION TO THE BUILDING	4
MEP CONCEPT	5
VENTILATION CONCEPT	6
HORIZONTAL DISTRIBUTION	7
DIMENSIONING	8
VENTILATION IN CARPARK AND FIRE VENTILATION	9
SCHEMATICS OF HYDRONIC INSTALLATIONS	10
CONSIDERATIONS BEHIND HYDRONIC INSTALLATIONS	11
SHAFT ARRANGEMENT	12
TECHNICAL FLOORS	13
PARAMTERS OF SENSITIVITY ANALYSIS	14
RESULTS OF SENSITIVITY ANALYSIS	15
ENERGY AND INDOOR CLIMATE	17
ENERGY FRAME CALCULATION	18
REFLECTIONS AND CONCLUSION	19
REFERENCES	20

APPENDIX

Appendix A – Space types and vent
Appendix B – Schematic ventilation
Appendix C – Pressure loss in horiz
Appendix D – Links for data sheets
Appendix E – Calculation for hydror
Appendix F – Technical room level 7
Appendix G – Area assumptions for
Appendix H – Simulation input
Appendix I – Be18 choices and ass
Appendix J – Building area and hea
Appendix K – Building envelope and
Appendix L – U-values and illustration
Appendix M – Shading
Appendix N – Be18 documentation

- ntilation rate calculation n drawing izontal ducting
- onic installations 7 and 16 or technical rooms
- sumptions at capacity nd line loss tion of the thermal layers

DESIGN CRITERIA

Bygningsreglementet.dk Lavenergiklasse

	DGNB			DGNB
	Platinum			Bronze*
Total performance index	80% and higher	65% and higher	50% and higher	35% and higher
Minimum performance index	65%	50%	35%	%

Ventilation rates (I/s/m2)* Single office 1.4 Landscape office 1.4 4.2 Meeting room Auditorium 10 Corridor 0.7 Toilet 10 Technical room and 0.7 shaft 4.2 Kitchen

Ventilation duct dimensioning				
Maximum velocity	5 m/s			
Ideal pressure loss	0.5 Pa/m			
Maximum pressure loss	0.6 Pa/m			

*Required ventilation rates to full fill Indoor
Climate Category II for low polluting buildings

Building Envelope (W//m2*K)					
	BR18	C	5)		
		2.5	7.5	10	
Roof	0.20	0.20	0.15	0.10	
Exterior walls	0.30	0.30	0.20	0.15	
Floor towards ground	0.20	0.30	0.20	0.15	
Windows	1.80	1.40	1.20	1.00	
	Ener	gy			
BR18		41 kWH/ı	m2/year		
Low Energy Frame	33 kWh/m2/year Ug = 0.70 W/m2K, gg = 0.50, psi = 0.05 W/mK				
	VAV max SFP = 1800 J/m3				
Daylight					
Daylight Atonomy	50% of the relevant floor area must have more than 300 lux 50% of the time				
Indoor Environment Quality – Category II (DS/EN 16798)					
Predicted mean vote	-0.5 < PMV < 0.5				
Operative temperature	20 to 26 degC				

VISION

Our goal is to design a comfortable building, building where the installations supports the occupant's thermal and visual well being. We aim to hide the piping and ducts to avoid interfering with the minimalistic architectural design.

DESIGN CRITERIA

The main focus for this report has been to make an overall coherent MEP system that fulfills all the requirements, including the three main criteria; cost, time, and sustainability. Further, fulfilling the Danish Building Regulation from 2018 and Indoor Climate Category II (DS/EN 16798) has been a threshold, where the DGNB Platinum certification and the Low Energy Frame has been the final goals. To reach these goals we aim to score the maximum number of points in the relevant DGNB categories, for instance for the building envelope.

Additionally, the report has put extra focus on matters concerning comfort, ventilation, energy, space optimization and which are elaborated throughout the report.

INTRODUCTION TO THE BUILDING

BUILDING INFORMATION				
Building height	67.6 m			
Floors above ground	17			
Basement floors	5			
Ground floor area	1.229 m2			
Heated area	18.953 m2			
Office height	3.146 mm			
Office area	3.906 m2			
Office area	5.500 mz			

BUILDING 313

The building is divided into three main parts; the pedestal level at the bottom, the tower level in the middle, and the sky bar at the top. At the pedestal level the user is welcomed by an atrium. Further, this part of the building houses two auditoriums, a gym, shower and toilet facilities, cafeteria, common areas, and meeting rooms.

In the tower the offices are located. Each floor also has a common area, kitchenette, meeting rooms, and toilets.

The sky bar at the very top contains a restaurant and common areas.

The building's technical installations are mainly placed in two shafts – one in the northern part and one in the southern part.

The installations in the shaft are connected to service station in the technical rooms in the basement, on the 7th floor, and on the 16th floor.

MEP

MEP CONCEPT

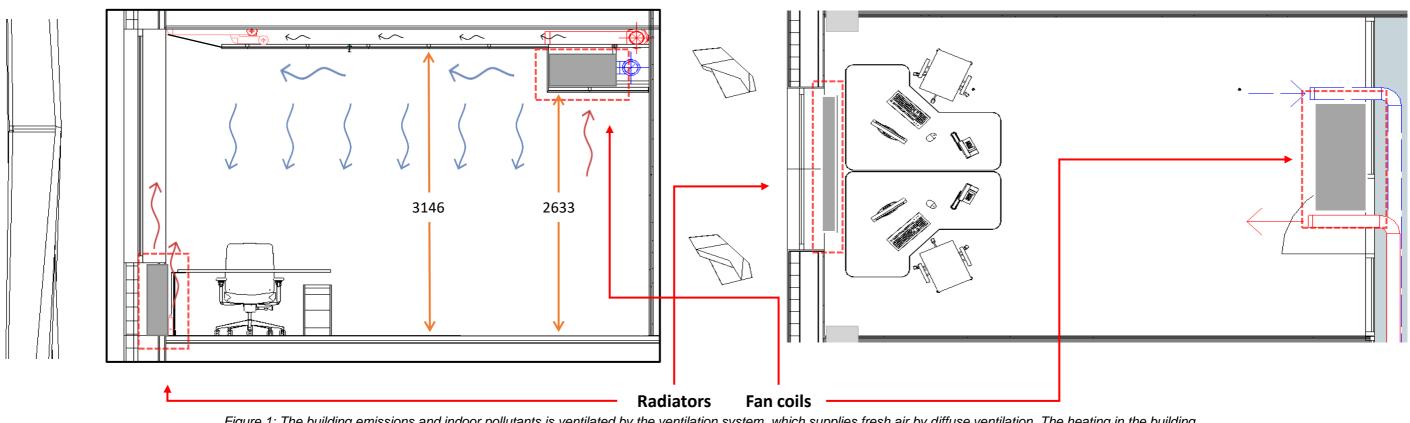
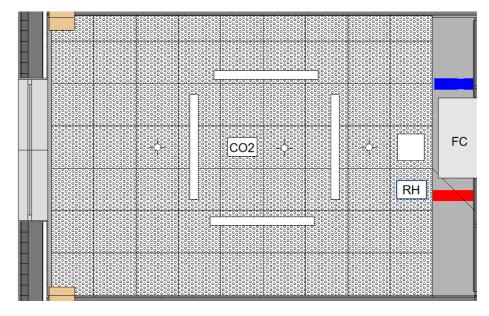


Figure 1: The building emissions and indoor pollutants is ventilated by the ventilation system, which supplies fresh air by diffuse ventilation. The heating in the building is regulated by radiators for heating and fan coil units for cooling.

VENTILATION PRINCIPLE

To ventilate the building from its building emission and indoor pollutions diffuse ventilation is used. Diffuse ventilation has several advantages compared to other ventilation solutions. The main reason for choosing diffuse ventilation is that it only requires 200 mm for the horizontal ducts to distribute the air, whereas regular ventilation, like displacement ventilation requires 500 mm. The extra 300 mm space increases the ceiling heigh and allows more daylight penetration in the room. Further, the distributed air is blown evenly down towards the office area, ensuring a low risk of draught, which allows the supply temperature to be 18C or even lower[2].

In the suspended ceiling the free height in the office area is 200 mm, whereas the free height in the hallway area and the beginning of the office area is 675 mm. The extra height within the suspended ceiling allows the ducts and pipes to cross each other and creates space for the fan coils in the offices. The amount of supplied air to each room is regulated through CO2 sensors responding to the dampers for a sufficient flow rate, whereas the larger rooms uses a variable air volume (VAV) for a more precise air change and the smaller rooms uses constant air volume (CAV) as the components are smaller and cheaper. To save energy the heat from the return air are utilized in a rotary heat exchanger in the AHU.


HEATING AND COOLING PRINCIPLE

MEP

The rooms are heated by radiators as seen in figure 1. The supply temperature is only 45 C to score max point in DGBN criteria TEC 1.4 and due to the possibility for big radiator surface underneath the windows in the main part of the building. Return temperature is 35 C. Fan coil units are used for cooling of the rooms, and they are connected to a district cooling supply system with temperature set 7C/12C, this temperature set is based on datasheet number 2, in Appendix D.

CEILING PLAN

Figure 2 shows the ceiling in an office space. The ceiling has four light panels to ensure sufficient lighting. In the middle there is a CO2 sensor to regulate the ventilation by the damper in the room. Next to the fan coil there an inspection hatch is placed to allow access to service the unit and to inspect and service the piping in the ceiling. The gray area to the right shows the lowered ceiling (675 mm) while the rest of the ceiling has suspended ceiling (free height of 200 mm) with metal panels of small perforated wholes to let the air through.

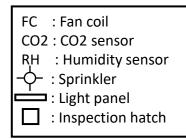


Figure 2: Ceiling plan for an office room.

5

VENTILATION DEMAND

As seen on figure 3 the building accommodates many different type of facilities and room types, which have different ventilation needs, since the building will be equipped with FCUs the ventilation only needs to cover the requirement for good atmospheric air quality for indoor climate category II according to DS/EN 16798. In Revit all rooms in the building have been assigned space types with corresponding ventilations rate, occupancy based on DS/EN 16798. The space types and their characteristics are listed in appendix A, table A.1 Extracting these characteristics of all spaces from Revit gave us the ability to get an overview of the areas of the different space types, the ventilation demand per floor and the occupancy per floor. This overview can be seen in appendix A. The building have space for six main air handling units (AHU) and two additional unit for the kitchen on level 16 and on ground level and level 3, based on the ventilation demand of each floor the building was split into three zones, each served by two of the main AHUs. These zone can be seen on figure 3.

CONCURRENCY FACTOR

DS/EN 16798 prescribes different occupancies for different space types, these were used to calculate an over all occupancy for the different floor types. To find a suitable concurrency factor for the ventilation system the occupancies, based on DS/EN 16798, was compared to the occupancies that the architects have used when designing the building, the comparison can be seen in table A.1 in appendix A. It turned out that architects have designed the building for much lower occupancies than DS/EN 16798 prescribes and an concurrency factor of 0.7 was used for almost every floor when calculating the size of the main shafts.

SIZING OF MAIN VERTICAL DUCTS

It is assumed that for every floor the ventilation demand can be equally divided between the ventilation units. The sum of the ventilation demand in each zone was used to find the size of the vertical ducts. To make the shaft space efficient the vertical shafts are rectangular. The ventilation demand is highest for zone 1, which requires 4740 l/s, to achieve a pressure loss on less that 0.5 Pa/m the required ducts size is 600 x 1200 mm, calculated trough a sizing tool provided by the ventilation supplier Øland. The supply duct needs 30 mm of insulation.

	CORE I.		CORE II.			
MEP	6 x WC		SKY			
Lounge area	6 x WC		BAR			
	6 x WC	21 individual spaces	Printing room & Kitchenette	28 open office spaces		701
MIXED	6 x WC	21 individual spaces	Printing room & Kitchenette	28 open office spaces		
	6 x WC	21 individual spaces	Printing room & Kitchenette	28 open office spaces		
OPEN OFFICE	6 x WC	49 working stations	Printing room & Kitchenette	2 meeting rooms 15 people each	J	
	6 x WC	49 working stations	Printing room & Kitchenette	2 meeting rooms 15 people each		
	6 x WC	49 working stations	Printing room & Kitchenette	2 meeting rooms 15 people each		
	6 x WC	49 working stations	Printing room & Kitchenette	2 meeting rooms 15 people each		
MEP	6 x WC	195 m²	Kitchenette & Lounge area	2 meeting rooms 2 x 40 people 1 x 20 people		
INDIVIDUAL OFFICE	6 x WC	27 working stations	Printing room & Kitchenette	2 meeting rooms 15 people each		
	6 x WC	27 working stations	Printing room & Kitchenette	2 meeting rooms 15 people each		
	6 x WC	27 working stations	Printing room & Kitchenette	2 meeting rooms 15 people each		
GYM	10 x WC	Cafeteria	Storage area for gym		J	
MEETING ROOMS	10 x WC	1 x 40 people 2 x 25 people	COMMON AREAS		AUDITORIUM 200 people	
MEETING ROOMS	10 x WC	1 x 40 people 2 x 25 people	COMMON	AREAS		
CAFETERIA CAFETERIA	AUDITORIUM 200 people	SECURITY ROOM & FIRE ROOM 4 x WC	RECEPTION		TRIUM & ENTRANCE	Γ
MEP	415 m2	4 X WC	CHANGING ROOMS	BICYCLE PAR	KING 650 spots	
				CAR PARKING	29 parking spots	
		CAR	PARKING	51 p	arking spots	
		CAR	PARKING	51 p	arking spots	
		CAR	PARKING	51 p	arking spots	1

Figure 3: Schematic section of the building, where the distribution of different room types is seen, further the three different zones which the ventilation system is split up is marked

		Level 17
		Level 16
		Level 15 60 m
NE 3 -		Level 14
		Level 13
	-de	Level 12
		Level 11
ىرىپەر يېلىرىم ئوغۇمۇمۇرىيىتى <u>سىرىمى</u>		Level 10
		Level 9
		Level 8
NE 2		Level 7 29 m
		Level 6
ىرىيەرىكە كەركىيەت يىلىرىيەر بىلەرلىيەت يىلىرىيەت يېرىپىرىيەت يېرىپىرىيەت يېرىپىرىيەت يېرىپىرىيەت يېرىپىرىيەت يېرىپىرىيە		Level 5
		Level 4
		Level 3 13 m
and the second		Level 2
ZON	E 1	Level 1
		Level 0
RAMP		Level -1
RAMP	and and a	Level -2
RAMP		Level -3
RAMP		Level -4
RAMP		Level -5 17m
		Level -5 1/M

HORIZONTAL DISTRIBUTION

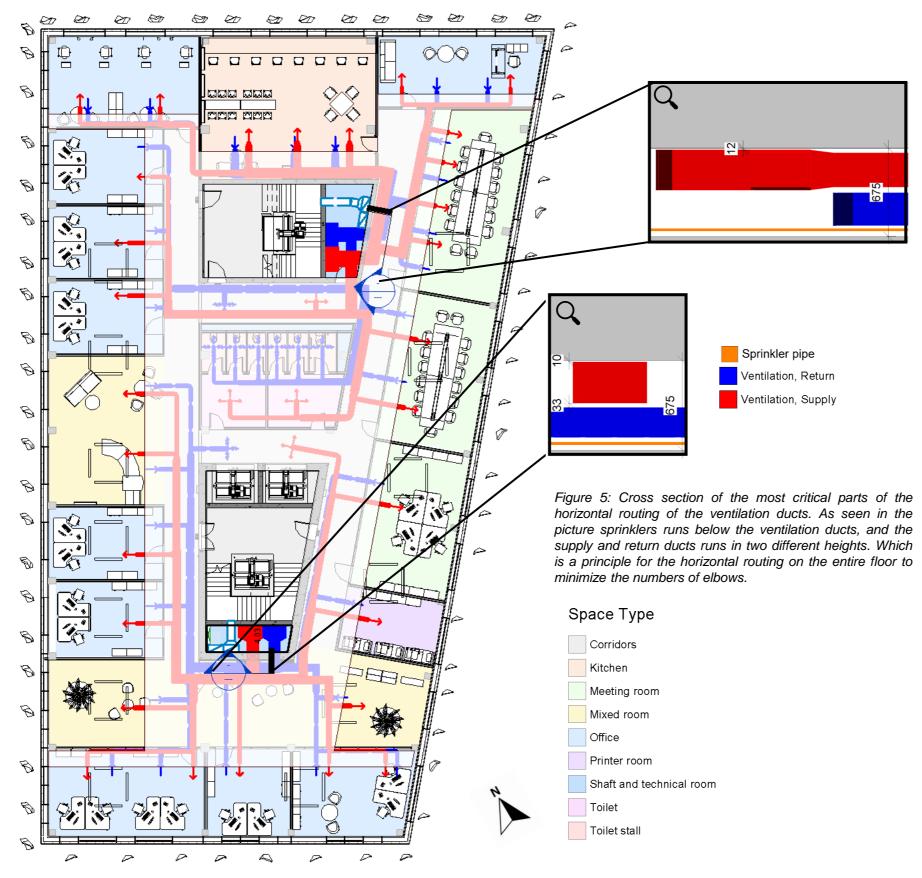


Figure 4: Drawing of the routing of the horizontal ducts between rooms on level 4. On all floors the air terminal must not be more than 25 m away from the main vertical duct to avoid a too high pressure loss in the system. The white coloured area indicates the part of the suspended ceiling which has a free height of 675 mm.

MEP

DISTIRUBTION OF AIR

The air is supplied from the air handling units (AHU) placed in the basement, 7th floor, and 16th floor. From the air handling unit, the ducts runs along the core in a vertical direction in the two main shafts. The air is then distributed on each floor along the corridors between the core and the rooms. The shafts are placed in the northern and southern end of the core to ensure that the vertical distance from the horizontal pipes to the air terminal furthest away are below 25 m. The concept of the routing are shown in the plane view of level 4 in figure 4.

The supply ducts are insulated with 30 mm insulation from the AHU to last branch in the system, to ensure a consistent supply air temperature. To avoid condensation a humidity sensor is placed in all rooms and the heat exchanger are controlled by these.

Since the shafts are within one fire zone and the floors are within another. Fire dampers are placed when the horizontal ducts leaves the shafts and silencers will be placed when needed where the horizontal ducts branch out to the rooms. The concept can be seen on the schematic drawing in appendix B.

CRITICAL SECTION

To make a space efficient building it have been a goal for both the structural team and the MEP team reduce the slab height and the height of the suspended ceiling. The structural team came op with a solutions for CLT slabs that where only 360 mm wide and without beams in the suspended ceiling. Rectangular ducts are used near the main shaft where the air flow is highest. This made it possible to decrease the suspended ceiling to 675 mm of free height in the corridors and 200 mm in the offices and residence areas, which is indicated with the white box in figure 4.

As seen in figure 5 the critical section are tight, but with squared ducts it is possible for them to cross one another at the most critical points, which is just outside the shafts.

DIMENSIONING

HORIZONTAL VENTILATION ROUTES

The horizontal ventilation routes are modelled at level 4, and dimensioned to not exceed a pressure loss of 0.6 Pa/m and an air velocity of 5 m/s. As seen in figure 6 and 7 this is achieved. Further, the pressure loss at the air terminal are within the range of 0.4 Pa/m to 0.5 Pa/m, which makes it possible to increase the ventilation rate, in case the tenant wants to re-arrange and make some of the offices into meeting rooms.

AIR HANDLING UNITS

The air handling units are found through the ventilation rates and the pressure losses, which can be seen in appendix C. The units are divided into three zones as seen on figure 9. Within each zone two ventilation units are used to supply the northern and southern part of the building respectively. When aiming for the Low Energy Frame it is essential to have a low specific fan power and a high heat recovery rate. Therefore, SystemairCAD has been used to optimize the AHU in relation to these parameters. For the two upper zones the same AHU, Geniox 24, has been chosen, but due to the small difference in ventilation rates the zones' units differs slightly in relation to SFP and heat recovery, which can be seen in figure 8. In the lower zone, the AHUs are located in the basement in a room with double height, which allows the unit to be taller than the other unit types. Here the unit Geniox 27 is applied.

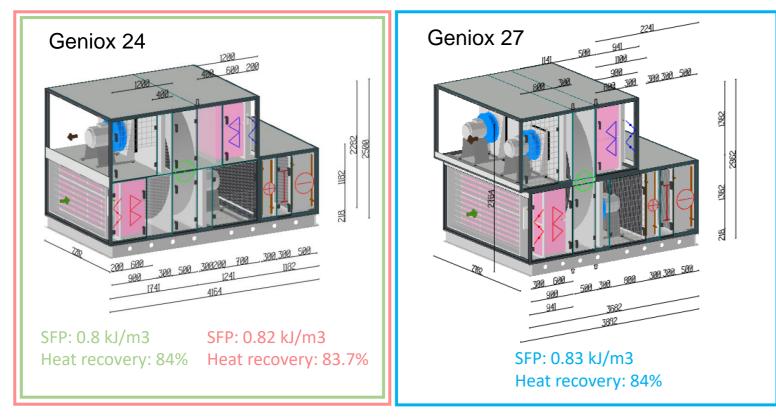


Figure 8: Illustration of the AHUs placed on the 7th floor and roof to the right and the AHUs in the basement to the left, including the different specific fan power values and heat recovery rates. The pitures are taken from SystemairCAD.

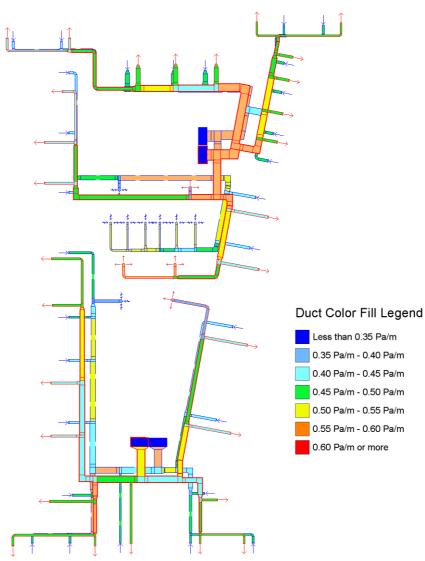


Figure 6: Illustrating the pressure loss for the horizontal ducts on level 4.

indicated to the right.

MEP

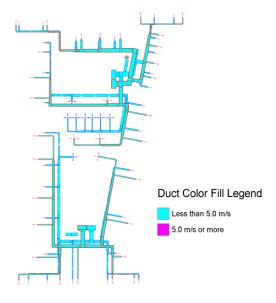


Figure 7: The air velocity in the horizontal ducts, does not exceed 5 m/s for level 4.

Level 11 - 16 4.0 m3/s/AHU 21 Pa pressure loss

Level 4 - 10 3.8 m3/s/AHU 21 Pa pressure loss

Pedestal 4.7 m3/s/AHU 26 Pa pressure loss

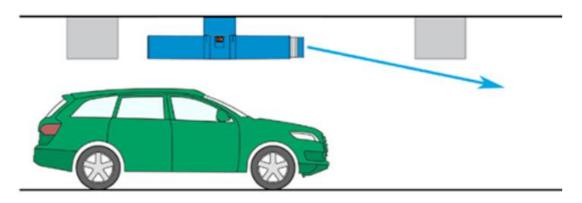

8

Figure 9: Showing the division of zone types for the AHUs indicated by colours. There are two AHUs within each zone. One unit's ventilation rate and pressure loss to the farthest air terminal is

VENTILATION IN CARPARK AND FIRE VENTILATION

VENTILATION IN CARPARK

The ventilation in the carpark will be supported by jet fans that will lead the exhausted air outside through the opening of the carpark, fresh air will enter through a vertical duct to create circulation. The jet fans can be placed between the beams in the basement and no horizontal ducts are needed, which can be seen in figure 10. As a result the clear height of the basement can be increased compared to a ducted system. The height of the jet fan is approximately 500 mm, see appendix D, datasheet number 4, and the beams in the basement is 400 mm, allowing the jet fans to be placed in between the beams and thereby only lowering the free height by 100 mm. The free total height is 2.6 m from the floor to the jet fan.

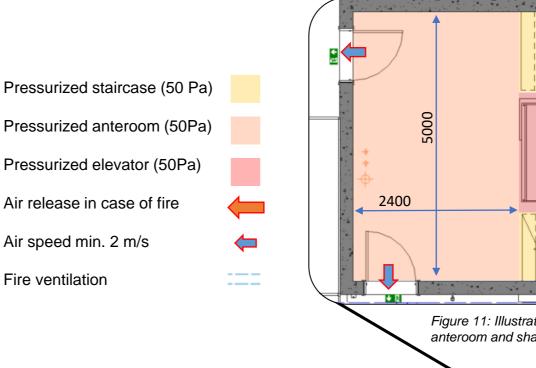


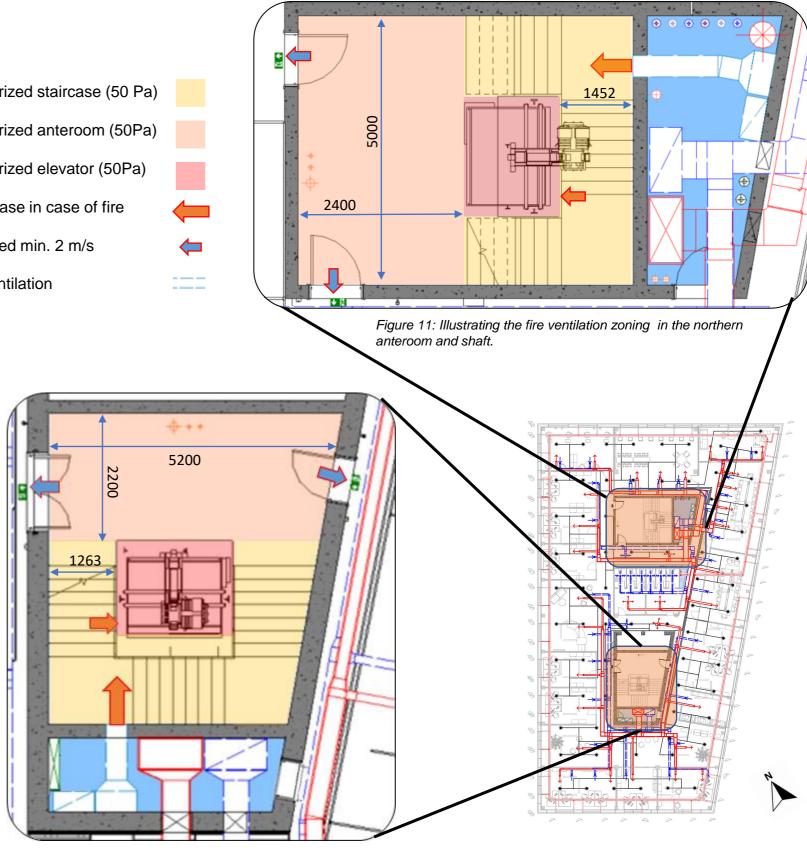
Figure 10: Principle drawing of the Jet fans, made by Novenco.

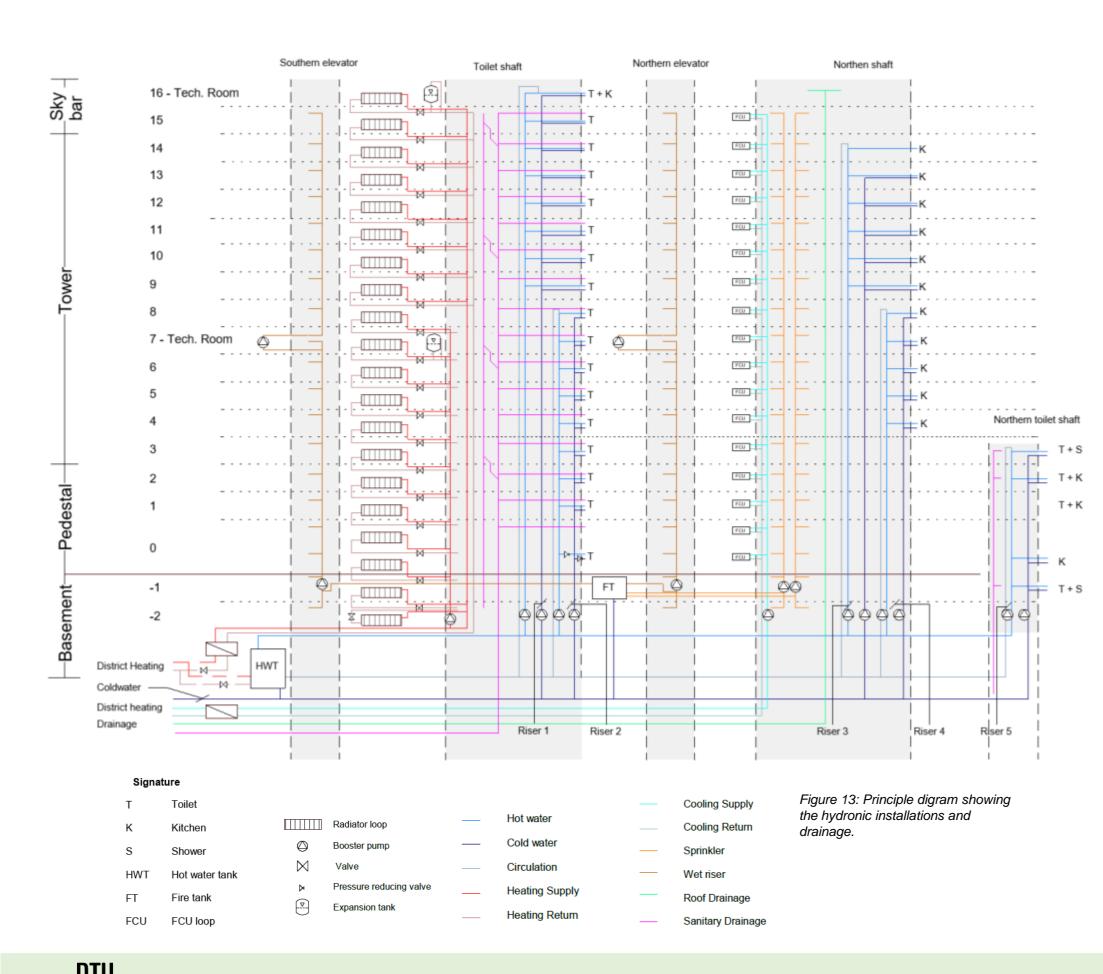
FIRE VENTILATION

MEP

The allocated fire ventilation contain a set of two ducts (400x800 mm) and are placed in each shaft as seen on figure 11 and 12. The fire ventilation will ensure that in case of fire the staircases, anteroom and elevator will be pressurized with an overpressure of minimum 50 Pa. The staircases and the fire ventilation ducts in the shafts are connected by horizontal ducts on every floor. The staircase surrounds the elevator and a grill is letting air flow between the staircases and the elevator shaft. The air release in case of fire will further ensure a minimum air velocity of 2.0 m/s through an open door to the staircase in any effected zone in the entire building. The air-release will further be applicable for the floor below the fireaffected floor and when all other doors and elevators are closed. Both anterooms, staircases, elevators, and southern and northern shafts are placed within a fire section marked by the thick walls. The division of fire zones can be seen in the report from subject 5. Space in the basement and on level 16 have been allocated for fire ventilation.

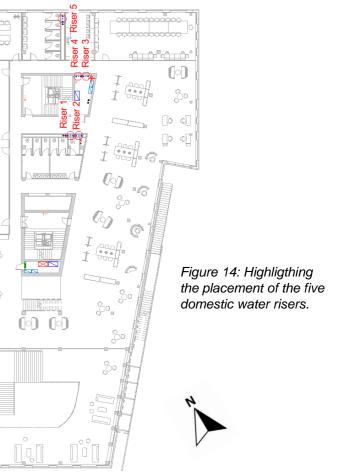
Lastly, the anterooms must be between 5 to 20 m2 and the minimum width of the staircase may not be less than 1.2 m. This is all obtained as seen in the figures 11 and 12.




Figure 12: Illustrating the fire ventilation zoning in the southern anteroom and shaft.

GROUP 10

9


SCHEMATICS OF HYDRONIC INSTALLATIONS

MEP

INSTALLATIONS

PRINCIPLE OF THE HYDRONIC

The hydronic installations in the building are shown on the schematic diagram on figure 13 and includes water for heating, domestic water, sprinkling, wet riser, roof drainage and sanitary drainage. All installations are connected to the basement where service station for all types of technical services are placed, but on the seventh floor additional technical installations like booster pumps for the hydronic fire installations and an expansion vessel for the heating system is placed. On all levels toilets are placed close to the toilet shaft where riser 1 and 2 are located, riser 3 and 4 serves kitchenettes placed close to the northern shaft on all office floors which is from floor 4 to 14. On level -1 to 3 shower room, kitchens and toilets are placed in the northern

end of the building, away from the shafts. Together with a need of dividing the system into pressure zones creates the need of water risers in another location that the northern shaft. To secure hot water within 10 seconds hot water tanks are placed in the basement and within each domestic hot water riser, the water is circulating.

The pumps have to be placed at the service stations in basement, outside of the shafts, even though they are drawn in the shaft at this principle drawing.

DOMESTIC WATER

Different system for distribution of domestic water are applicable for high rise buildings [15]. Some of these systems are shown in table 1 together with an evaluation of the systems. From the table zone divided systems and series connected systems are shown to be attractive. These systems have a low risk of bacterial growth and a relatively low cost. Though, they both require more space for installations compared to some of the other systems. The zone divided system takes up more space in the basement with booster pumps placed at the bottom of each zone. The series connected system require space for booster pumps at several floors. Further, the series connected systems are more vulnerable in relation to pump failure as if one of the pumps fail, the entire building would be without water. For the zone divided system only the zone in which the pump failure occurred would be without water. Due to the space requirements and the consequences of a pump failure, we have chosen to distribute the domestic water with a zone divided system. All the pipes are insulated to avoid high thermal losses and condensation.

	System diagram	Risk of bacterial growth	Initial cost	Energy cost	Required space
Roof tank		high	high	high	low
Single booster system		low	high	high	low
Zone divided system		low	low	medium	medium
Series connected system		low	medium	low	medium
Pressure zones with break units and top tank	Dis Dis Dis Dis Dis Dis	high	high	low	high

Table 1: Different domestic water distribution systems and their score; high, medium, and low, relative to each other.

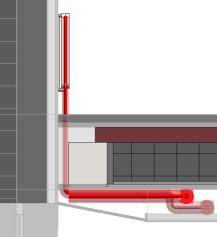
PRESSURE ZONES

The number of zones depends on the statical pressure, which is determined from the building height. The total pressure at the tap should be between 250 to 550 kPa, which results in a statical pressure difference of 300 kPa. If the statical pressure exceeds 300 kPa pressure reducing valves are needed [8].

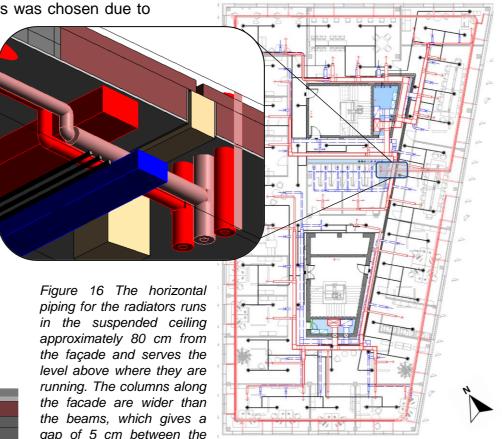
In table E1 in appendix E the statical pressure for the five risers are shown. Ideally riser 2 should be split to avoid the pressure reducing valve, but this have not been prioritized due to space constraints. Further, only one pressure reducing valve is needed.

ROOF DRAINAGE

The rainwater is collected in two main siphonic roof drainage that are connected to one main pipe running in the northern shaft. The siphonic roof drainage is great for larger rainfalls as the flowrate generally is higher, since there are less air in the pipes and would drain the roof faster [16].


COOLING

District cooling is provided to the building by chillers at DTU and transported in an internal system on the campus. As seen on figure 13 on the last page the cooling are supplied to the rooms by one vertical riser and then distributed horizontally at each floor. The supply and return pipes for the fan coil units will be running in the suspended ceiling and the FCUs will be placed according the cooling demand in each room. The piping for cooling is insulated to avoid thermal losses and condensation.


HEATING

The building is indirectly connected to the district heating provided by Vestforbrænding and the radiators in the building are serviced by two sets of supply and return pipes, who are insulated. The heat distribution are split into two to avoid too high pressure in the system and expansion vessels are placed in top of the two systems where the pressure is lowest, and spaces are allocated for them in the technical rooms on these floors. Due to low U-values one floor can be seen as one radiator loop, since the volume of water only will be around 1000 kg/h, and there is room for pipes with a nominal diameter of 50 mm. An estimation of the water mass running in the pipes and sufficient size for the pipes can be seen in appendix E in table E2. Other solutions like radiant ceiling and thermal slabs could have been chosen for heating. Radiators was chosen due to

Figure 15: The routing of the pipes from the vertical pipes in the toilet shaft to the horizontal pipes serving the floor. Ass seen the pipes can branch out between the ventilation ducts (red and blue) and sprinkling pipes (black).

gap of 5 cm between the façade and the slab, the pipes are running in this gap, which will be fire insulated.

possibility for high flexibility, every radiator has its own thermostat, which mean that bigger rooms easily can be changed to smaller which all can be individually controlled.

FIRE INSTALLATIONS

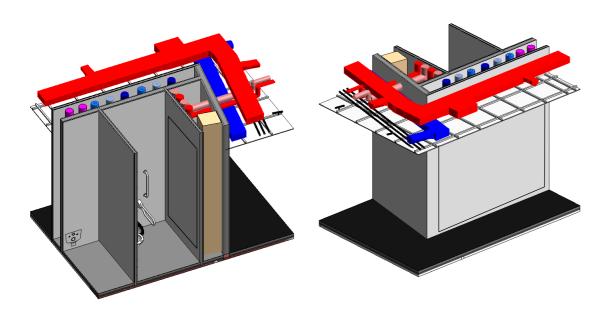
The building has an extensive sprinkler system on every floor, the sprinkling system are designed by the fire team to full fill that each sprinkler head covers maximum 12 m2. The routing of the sprinkling can be seen in figure 17. Fire risers are needed due to the building height being above 30 m, thus booster pumps are also necessary. The wet riser and hose wheel pipes are placed in the anteroom in front of the fire elevators in the two staircase rooms as seen on figure 18. Booster pumps are placed in the technical room on level

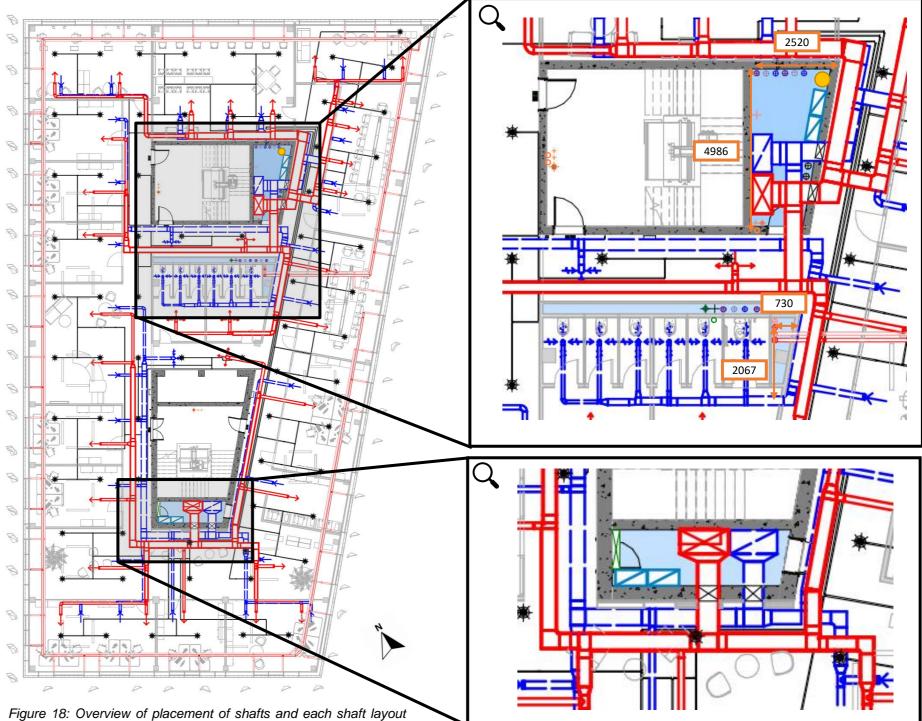
7.

Figure 17: Horizontal pipes for heating and sprinkling, together with ventilation system. The pipes for heating runs along the façade and the sprinklers are the black pipes, running in H-shapes.

SHAFT ARRANGEMENT

NOTHERN SHAFT

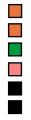

The northern shafts seen on figure 18, contains comfort ventilation (blue and red squares), fire ventilation (turkish blue squares), two set of domestic water risers including cold water, hot water, and circulation, cooling supply and return, solid waste which is collected in a container in the basement, roof drainage and a set of sprinkler risers. Each installation are installed with space for inspection and service.


TOILET SHAFT

The northern toilet shaft, contains two sets of domestic water rises (cold, circulation and hot domestic water) and a set of sanitary drainage with double stack waste pipes to avoid pressure fluctuations. Further, the heat distribution pipes (supply and return) are placed near the handicap toilet with easy access to the rest of the floor and almost in the center of the building to decrease the horizontal distances in the piping to the radiators. The shaft has room for manifolds to distribute the heat to the radiators on the respective floors. Both shafts facing the toilets are designed with a thin wall, which easily can be taken off to assess the installations. This has been illustrated in the 3D-model below.

SOUTHERN SHAFT

The southern shaft accommodate comfort ventilation distribution, fire ventilation, and electronics. The electronics are placed here, so it is kept away from the wet risers in case of leaches. The dimensions given on the comfort ventilation ducts are the maximum sizes to make sure the ducts will fit into the shaft.


and arrangement.

Pipe signature

- Solid waste
- Dom. cold water
- Dom. circ. water
- Dom. hot water
- Heat Supply
- Heat Return
- Wet riser

Hose reel pipe Sprinkler riser Sanitary drainage Roof drainage Cooling - Supply Cooling - Return

TECHNICAL FLOORS

ARRANGEMENT

The building have 1205 m2 of technical room which are divided up in 4 different technical floors, two in the basement, one on the 7th floor and on one the 16th floor. By choosing this layout it have been possible to divide the ventilation up in six different zones and in this way reduce the vertical ventilation ducts. Furthermore, this division gives more space to fire installations throughout the building. An overview of the sizes of the different technical rooms can be seen in table 2. The

technical floors in the basement account for 66% of the total area for technical rooms. The technical rooms on the 16th and 7th floor have space for two AHUs each, fire installations, expansions vessels and other equipment, floor plans can be seen in appendix F. The technical rooms in the basement accommodates all different type of technical installation that exist in the building and have partly double height.

AREA ALLOCATION

The areas for different service station are mainly based on the BSRIA handbook [12] and recommendations from the lectures [13]. An overview of the areas and how those are calculated can be seen in appendix G. The main pipes and ducts between the shafts and the service stations was modelled in Revit to ensure that the technical floors had sufficient space for those.

SIGNATURE

MEP

03

Detailed	Detailed
location	Area (m2)
Level-1	250
Level -2 (single height)	420
Level -2 (double height)	130
Level 7 - north	110
Level 7 - South	100
-	-
1205	
	Level-1 Level -2 (single height) Level -2 (double height) Level 7 - north Level 7 - South

Table 2: Overview of the areas for the technical rooms.

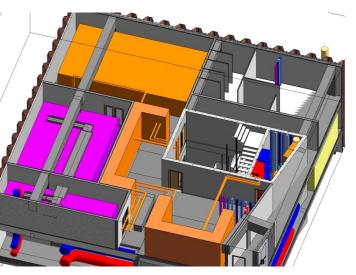


Figure 21: 3D view of the technical room in level -1. Main Pipes for hydronic fire installations and cable trays is drawn.

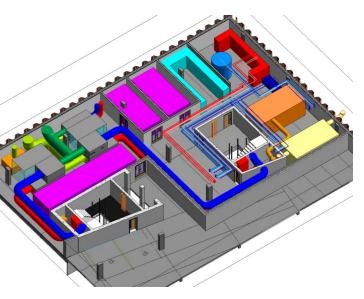
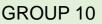
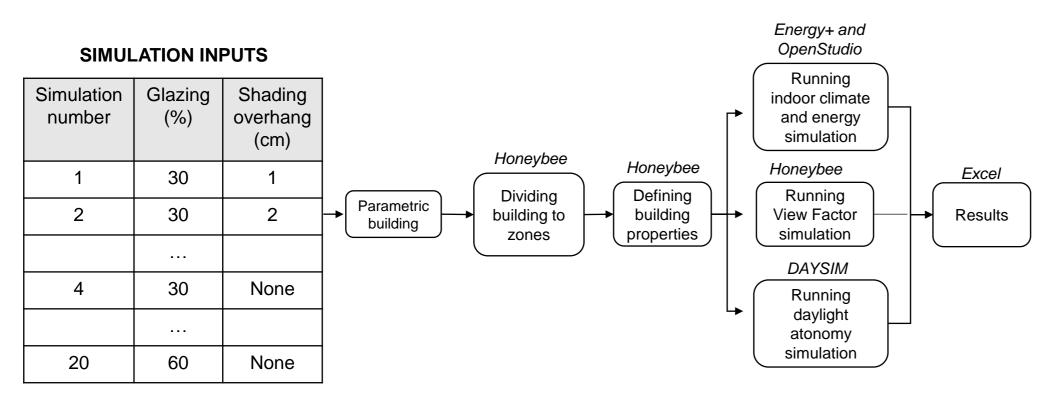




Figure 22: 3D view of the technical room on level -1, ducts for ventilation and main pipes for hydronic installations is drawn.

PARAMETERS OF THE SENSITIVITY ANALYSIS

The location, size and type of windows and shading have a big impact on the daylight levels in the building, view and overheating. It is important to choose the correct combination to achieve a satisfactory balance. To find the optimal combination a sensitivity study is carried out iterating through numerous different parameters to achieve an optimal design.

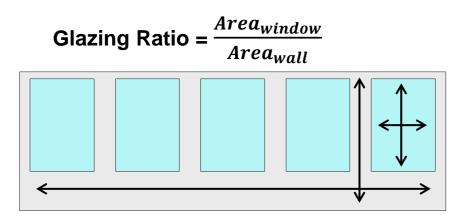


Figure 23: The glazing ration described the window and exterior wall relationship.

MEP

Distance between shadings

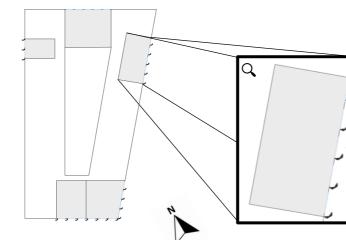


Figure 24: Showing the principle of the solar shadings.

SENSITIVITY ANALYSIS

The focus of the sensitivity analysis is to optimize the daylight, temperatures above 25, 26 and 27 C and the view factor. To regulate and optimize these factors a set of parameters are chosen which are the glazing percentage (figure 23) and the spacing between the vertical shades (figure 24) except on the north facade. The glazing percentages ranges from 20% to 60% with 10% step and for the spacing between the shades ranges from 1 to 4 m and 'no shading' with 1 m step, adding up to 20 simulations in total.

The simulation is run without surrounding building context as most of the office floors are not impacted by these in terms of daylight and energy. The lower floors which are impacted by the surroundings will be taken into account later in the report. Further, simulation input details can be seen in appendix H.

be analyzed.

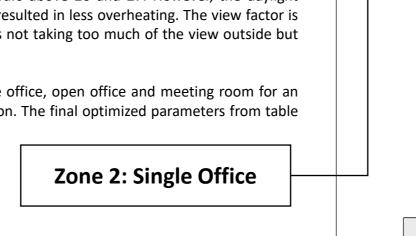
The tool used for the analysis is Grasshopper as it excels in running many simulations with multiple parameters but can also quickly become complex. The Grasshopper script is attached in the digital appendix. The flow chart to the left shows an overview of the script workflow. First of all, a parametric model of an office floor is modelled for quick adjustments geometry. The floor is then divided into critical zones, to minimize the amount of area to simulate, these can be seen on the next page on figure 25. Next, the properties of the building is defined. This step is very important as few assumptions can have big impact on the results. The model is then divided into thermal, daylight and view, where further properties are defined, and the simulation can take place. After each simulation, the results are stored in Excel, ready to

RESULTS OF THE SENSITIVITY ANALYSIS

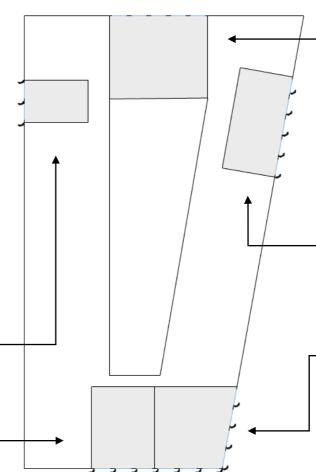
ANALYSIS AND RESULTS

MEP

All of the results of the sensitivity analysis are visualized in table 4 and the final optimized parameters are highlighted with green. The optimized values are generally chosen due to the design criteria of having 300 lux on 50% of the relevant floor area in 50% use time and the criteria of minimizing hours above 26 and 27. However, the daylight showed out to be the decisive factor in all zones, since a low DLA also resulted in less overheating. The view factor is included to extended the simulation and to make sure the shading was not taking too much of the view outside but did not end up playing a role in any of the designs.


The simulated zones are shown on the right, including, canteen, single office, open office and meeting room for an easy overview of the representative zones and their type and orientation. The final optimized parameters from table 4 (green) are collected in table 3.

Facade	Glazing [%]	Shade spacing [m]
North	50	No shades needed
East	30	2
South	40	4
West	50	2


Table 3: Final glazing values and shading distances on the office floor

	¢			Day	/light	- \								Over	heatir	ng	l								View		▶
Par	Parameters DLA Temp > 27 [hours]			Temp > 26 [hours]				Temp > 25 [hours]			Average View Factor																
Glazing	Shade Spacing	g Zoi	ne 1 Zo	ne 2 Zo	one 3 Z	one 4 Zo	ne 5 🛛	Zone 1 Z	one 2 Zo	ne 3 Zol	ne 4 Zoi	ne 5 Za	one 1 Zo	one 2 Zo	ne 3 Zo	ne 4 Zo	one 5	Zone 1	Zone 2	Zone 3 Z	one 4	Zone 5	Zone 1	Zone 2	Zone 3	Zone 4	Zone 5
0.3		1 🗙	31 💥	17 🖌	62 🗙	29 💥	31	/ 0	/ 0 🗸	0 🗸	0 🗸	0 🗸	0 🗸	4 🖌	0 🗸	0 🗸	0	91	38	0	65	154	60.71	65.03	60.9	61.92	<mark>63</mark> .78
0.3		2 🗶	31 💥	40 💥	33 🗸	∕ <u>88</u> √	<u>67</u>	/ 0	/ 3 🗸	0 🖌	<u>0</u> 🗸	<u>0</u> 🗸	0 🗸	16 🖌	0 🖌	<u>2</u> √	<u>18</u>	91	194	104	<u>831</u>	829	60.71	65.5 <mark>5</mark>	61.71	<u>6<mark>3.51</mark></u>	<u>64.<mark>85</mark></u>
0.3		3 🗙	31 🗙	33 🗙	33 🗸	82 🗸	58	0	/ 1 🗸	0 🗸	0 🗸	0 🗸	0 🗸	11 🗸	0 🗸	1 🗸	1	91	112	64	715	829	60.71	65.51	61.7	63.41	64.81
0.3		4 🗙	31 💥	40 🗙	33 🗸	91 🗸	71	/ 0	/ 3 🗸	0 🗸	0 🗸	0 🗸	0 🗸	17 🖌	0 🗸	3 🗸	21	91	215	147	957	889	60.71	65.67	61.89	63.93	65.15
0.3	No Shade	×	31 💥	40 쑳	33 🗸	91 🗸	67	/ 0	4 🗸	0 🖌	0 🖌	0 🗸	0 🗸	17 🖌	0 🗸	5 🖌	29	91	227	184	1024	994	60.71	60.82	62.01	64.18	65.47
0.4		1 🗙	38 💥	33 💥	29 🗸	79 🗸	58	/ 0	/ 2 🗸	0 🗸	0 🗸	0 🗸	0 🗸	12 🗸	0 🗸	0 🗸	1	220	158	1	444	504	61.18	65.21	61.13	62.5	64.09
0.4		2 🗙	38 💥	40 💥	46 🖌	97 🗸	96	/ 0	/ 10 🗸	0 🗸	0 🗸	0 🗸	0 🗸	35 🗸	0 🗙	125 🔀	132	220	355	303	1226	<mark>1</mark> 138	61.18	65.74	62.04	64.15	65.21
0.4		3 🗙	35 💥	40 🗙	42 🗸	91 🗸	<mark>8</mark> 7 🗨	/ 0	/ 8 🗸	0 🗸	0 🗸	0 🗸	0 🗸	28 🖌	0 🗸	75 🖌	81	220	299	308	<mark>1</mark> 176	<mark>1</mark> 049	61.18	65.74	62.09	64.15	65.22
0.4		4 🗙	38 💢	40 🖌	<u>50</u> 🗸	97 🗸	<mark>92</mark>	/ 0	/ 10 🗸	<u>0</u> 🗸	0 🗸	0 🗸	0 🗸	40 √	<u>0</u> 💥	218 💢	166	219	395	<u>398</u>	1397	1232	61.18	65.87	<u>62.3</u>	64.68	65.57
0.4	No Shade	×	35 💢	40 🖌	50 🗸	100 🗸	<mark>96</mark>	/ 0	13 🗸	0 🗸	0 🗸	0 🗸	0 🗸	43 🖌	0 🗙	269 🗙	203	219	417	488	1468	<mark>13</mark> 48	61.18	66.06	62.45	64.96	65.94
0.5		1 🖌	50 💥	40 🗙	33 🗸	91 🗸	75	/ 0	∕ 7 🗸	0 🗸	0 🗸	0 🗸	0 🗸	28 🗸	0 🗸	1 🖌	34	353	273	69	766	786	61.67	65.4 <mark>8</mark>	61.39	62.93	64.33
0.5		2 🗸	50 🖌	<u>53</u> 🗸	50 🗸	100 🗸	100	/ 0	″ <u>19</u> √	0 🗸	0 🗸	1 🖌	0 🗸	<u>67</u> 🗸	0 💥	358 💥	263	352	<u>476</u>	499	1463	<mark>13</mark> 49	61.67	<u>66.03</u>	62.33	64.6	65.47
0.5		3 🗸	50 🖌	53 🖌	50 🗸	100 🗸	100	/ 0	19 🗸	0 🗸	0 🗸	0 🗸	0 🗸	67 🗸	1 💥	387 💥	249	353	476	596	1508	1345	61.67	66.2	62.49	64.8	65.6
0.5		4 🗸	50 🖌	60 🖌	50 🗸	100 🗸	100	/ 0	23 🗸	0 🖌	2 🖌	15 🖌	0 🗸	86 🖌	2 💥	541 🗙	335	352	543	643	1668	1497	61.67	66.25	62.65	65.3	65.92
0.5	No Shade	\checkmark	<u>50</u> 🗸	60 🖌	50 🗸	100 🗸	100	/ <u>0</u> >	27 🗸	0 🗸	4 🗙	36 √	<u>0</u> 🗙	104 🖌	13 💥	642 🗙	413	<u>352</u>	575	788	1800	1653	<u>61.67</u>	66.53	62.88	65.7	66.4
0.6		1 🖌	50 💥	40 💥	46 🖌	97 🗸	<mark>8</mark> 7 🗨	/ 0	9 🗸	0 🗸	0 🖌	0 🗸	0 🗸	40 🖌	0 🗸	11 🗙	113	506	318	199	929	986	62.14	65.59	61.62	63.24	64.64
0.6		2 🗸	50 🖌	60 🖌	50 🗸	100 🗸	100	/ 0 🕽	28 🗸	0 🗸	1 💥	35 🗸	0 🗙	117 🗸	8 💥	439 💥	385	507	571	681	1538	1546		66.13	62.56	64.93	65.79
0.6		3 🗸	50 🖌	60 🖌	58 🗸	100 🗸	100	/ 0 🕽	29 🗸	0 🗸	5 🗙	51 🖌	0 🗙	118 🗸	56 🗙	663 💥	421	507	563	891	1762	160 4		66.39	62.9	65.38	66.05
0.6		4 🗸	50 🖌	60 🖌	58 🗸	100 🗸	100	/ 0 🕽	29 🗸	0 🐹	38 💥	77 🗸	0 🗙	152 🗸	30 💥	808 💥	505	506	658	828	1936	1718		66.52	62.97	65.83	66.32
0.6	No Shade	\checkmark	50 🖌	60 🖌	67 🗸	100 🗸	<mark>100</mark> <	/ 0 🕽	35 🗸	0 💥	141 💥	148	0 🗙	180 🔀	117 🗙	946 💥	<mark>6</mark> 43	506	724	1052	2086	1894	62.14	66.72	63.3	66.37	66.9

Table 4: Sensivity analysis results for the 5 zones during a year measured upon DLA, overheating and view. Settings not complying with the design criteria are marked with a red cross and if complying marked with a green check. The chosen settings are marked with green.

Zone 3: Open Office

Zone 1: Canteen

Zone 5: Meeting Room

Zone 4: Open Office

Figure 25: Showing the division of the critical zones.

RESULTS OF THE SENSITIVITY ANALYSIS

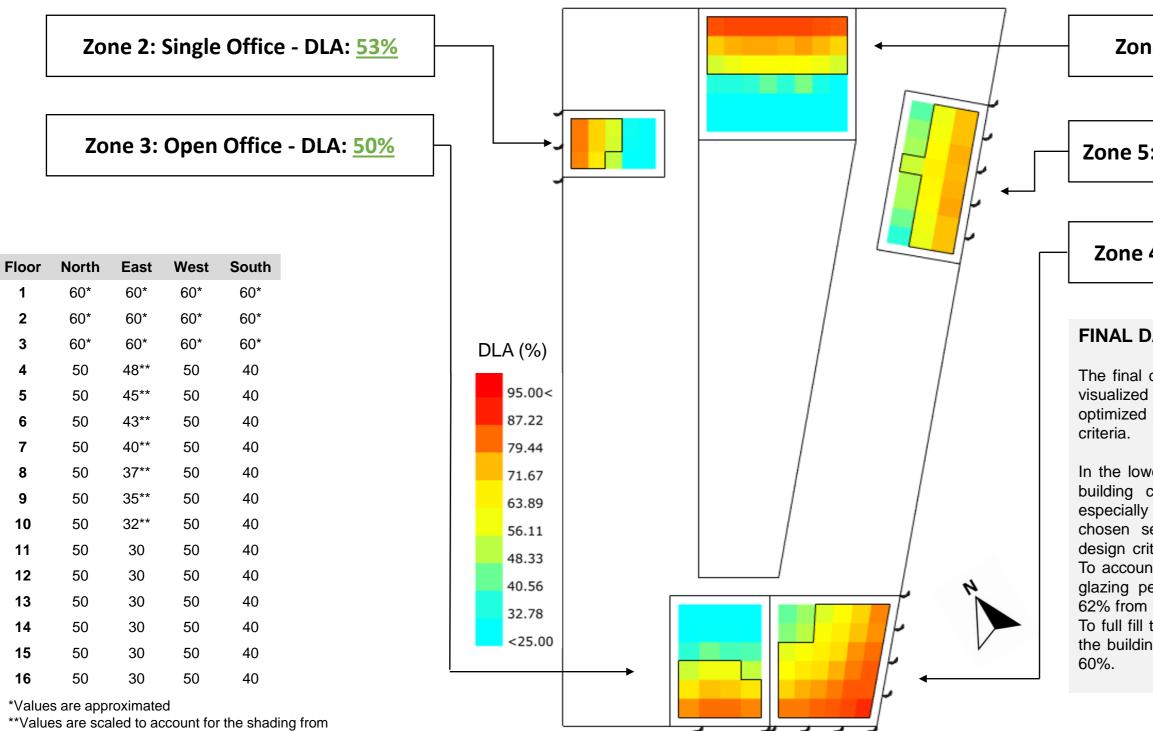


Figure 26: The final simulation for the five zones. The black line shows the boundary on where the 300 lux are present 50% of the time.

Window specification for Schüco Nordic Alu-inside U-value [W/m2*K]

g-value	U-value [w
0.37	0.70

For further information see appendix D, datasheet number 3.

Table 5: Glazing percentages for the different levels in the building varying with llevel and orientation.

MEP

Building 310

Zone 1: Canteen- DLA: 50%

Zone 5: Meeting Room- DLA: 67%

Zone 4: Open Office - DLA: 88%

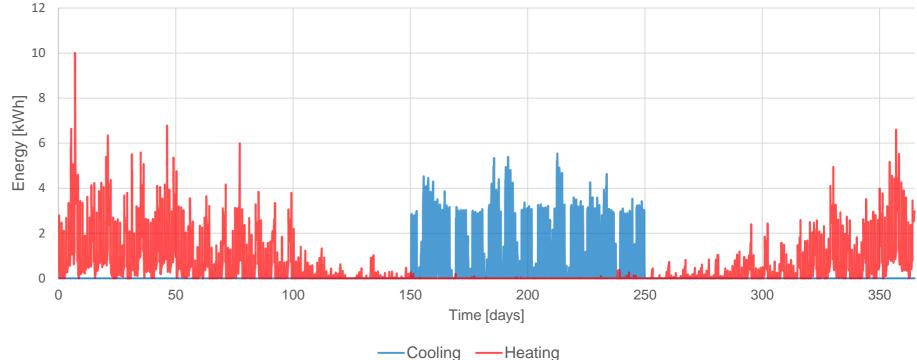
FINAL DAYLIGHT SIMULATION

The final daylight simulation for the 5 zones are visualized on figure 26. As earlier addressed the optimized parameter settings fulfils all the design

In the lower part of the building the surrounding building context block some of the daylight, especially Building 310 towards the east, and the chosen settings would therefore not fulfil the design criteria for the lower part of the building. To account for this, earlier studies show that the glazing percentage should increase linearly by 62% from level 12 to 1 marked with '**' in table 5. To full fill the DLA requirement the lowest part of the building need glazing ratios of approximately

Light Transmittance

0.70


ENERGY AND INDOOR CLIMATE

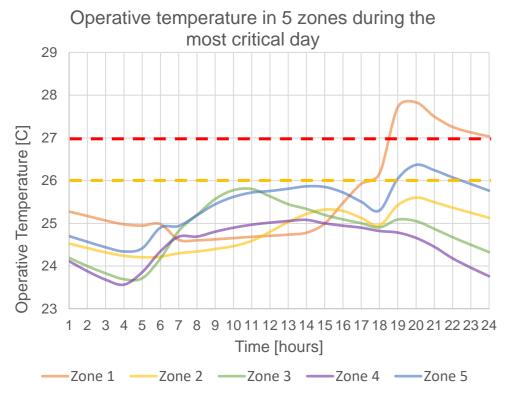

ENERGY AND OPERATIVE TEMPERATURE

Figure 27 shows the cooling and heating in the five zones during a year. The fan coils are set to turn on in May to September to avoid running heating and cooling at the same time. The heating demand is high during the winter and the cooling demand relatively lower during the summer, which may be due to the shading, as it will minimize the radiation during the summer or that the glazing is too large, which may increase the heat loss.

The operative temperature during the year is optimized to comply with BR18 and have less than 100 hours above 26 (orange dotted line) and less than 50 hours above 27 (red dotted line), which can be seen in figure 28.

The most critical day regarding overheating is showed in figure 29, where Zone 1 is the only room where the temperature exceed 27 C.

Operative temperature in 5 zones during a year

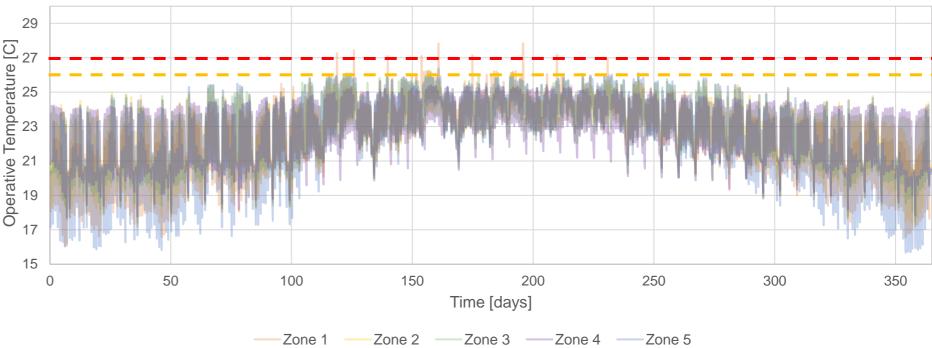


Figure 28: The final thermal simulation showing the operative temperature during the year for the 5 zones.

Figure 29: The final thermal simulation showing the operative temperature during a day for the 5 zones.

Energy for heating and cooling needed in 5 zones during a year

Figure 27: The final energy simulation showing the energy for cooling and heating during a year.

ENERGY FRAME CALCULATION

CHOICES AND ASSUMPTIONS

For the Be18 energy frame calculation several assumptions and choices has been made. These assumptions are stated in appendix I, and further supporting calculations can be seen in the following appendices. The glass ratios are found through the sensitivity analysis to fit the different levels of the building, and the glazing areas can be seen in appendix J.

As seen in figure 30 the Low Energy Frame is met with a total energy requirement of exactly 33.0 kW/m2/year. This goal is reached by having low U-values for the building envelope and low g-values for the windows to shut out the solar heating and thus avoid a too high use of mechanical cooling. Further, optimization of the air handling units' SFP-values and heat recovery rates has been an important factor to bring down the energy use for ventilators. Zones where daylight is controlled by the daylight sensor in the room, showed out to bring down the electricity requirements for lightning as well. Additionally, the solar shading panels has had a smaller positive impact too.

This goal has been reached without using solar panels. If solar panels are wanted, they can still be added, and they would decrease the required energy consumption even further.

The specific input and the complete key value documents can be found in appendix N.

In figure 31 the energy frame is calculated using a correction factor of 100% instead of 50% when calculating the building envelope U-values. This assumption is crucial in relation to being within the Low Energy Frame. Though, if the higher U-values are used, the building have an energy use lower than 41.1 kWh/m2/year, which is the threshold for the BR 2018 Energy Frame.

-Energy frame low energy	Energy frame low energy									
Without supplement	Supplement for special conditions	Total energy frame								
33,0	0,0	33,0								
Total energy requireme	ent	34,1								

Figure 31: Screenshot of the key numbers in kWh/m2 year for the energy frame calculation when using a correction factor of 100% for the different building envelope U-values calculated in appendix L.

MEP

0,0	special conditions		frame 95,1 33,0
0,0	special conditions	Total energy	frame 71,4 33,0
0,0	special conditions	Total energy	frame 41,1 33,0
0,0	special conditions	Total energy	frame 33,0 33,0
quirement	Net requirement		
15,4 ing 10,5 0,0	Room heating Domestic hot v Cooling	vater	8,9 6,5 1,9
ements	Heat loss from in	stallations	
5,7	Room heating		0,0
0,0 0,4	Domestic hot v	vater	1,2
0,0	Output from spe	cial sources	
3,5	Solar heat		0,0
0,5	Heat pump		0,0
0,7	Solar cells		0,0 0,0
	nt Supplement for 0,0 nt Supplement for 0,0 nt Supplement for 0,0 nt quirement 15,4 ing 10,5 0,0 ements 5,7 0,0 0,4 0,0 3,5 0,5	nt Supplement for special conditions 0,0 nt Supplement for special conditions 0,0 nt Supplement for special conditions 0,0 nt Quirement 15,4 ing 10,5 0,0 ements 5,7 0,0 0,0 ements 5,7 0,0 0,0 ements 5,7 0,0 0,0 Cooling Heat loss from ins Room heating Domestic hot v Cooling ements 5,7 0,0 0,0 Output from special Solar heat Heat pump Solar cells	nt Supplement for special conditions Total energy 0,0 nt Supplement for special conditions Total energy 0,0 nt Supplement for special conditions Total energy 0,0 nt Quirement 15,4 15,5 10 10 10 10 10 10 15 10 10 10 10 10 10 10 10 10 10

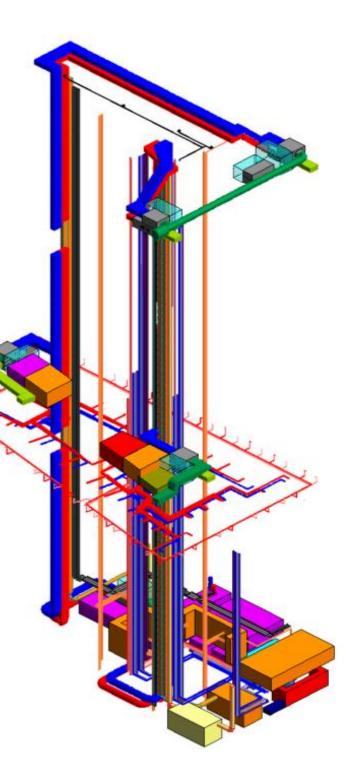
Figure 30: Screenshot of the key numbers in kWh/m2 year for the energy frame calculation made in Be18.

REFLECTIONS AND CONCLUSIONS

REFLECTION OF METHODS

The design phase of building 313 has involved thorough communication with the entire team and challenging decisions. Many of the decisions impact each other which makes it a complex task to fulfill all the requirements for each subject. A major learning has been to realize the importance of decisions in the early design stage as those can be difficult to change later on. A great tool for us has been Rhino/Grasshopper, as the parametric models are very effective once they are constructed, however it has mainly been used by our subject, and if the rest of the subjects could have utilized the parametric model in Rhino and integrated their analysis tools this could have benefitted the design process in many aspects.

FINAL SOLUTION


All our solution has been focusing primarily on a creating a coherent MEP system that fulfills all the requirements, including the three main criteria; cost, time, and sustainability. Some particular solutions have been to use fan coils for cooling as they are cheaper than a regular cooled ceiling, rather effective to regulate the temperature, flexible if one is defect to replace. On the other hand, they can emit noise to the environment, they must be serviced regularly to remove excess condensation water and takes up space from the suspended ceiling. Which show that not all solutions are perfect and choosing a solution requires prioritizing. Still, there remain unsolved details which must be further concretized in the next steps of the design phase.

CONCLUSION

Our main goal of making an overall coherent MEP system that fulfills all the requirements, including the three main criteria; cost, time, and sustainability as well as fulfilling the Danish Building Regulation from 2018 and Indoor Climate Category II (DS/EN 16798), has been accomplished in close collaboration with the remaining subjects 1, 2, and 5. The complete MEP system is shown to the right and is successfully integrated in the building model.

REFERENCES

References

- [1] DGNB, 2020. *Bæredygtighedscertificering af Nybyggeri og omfattende renoveringer*. 1st ed. Stuttgart: Green Building Council Denmark.
- [2] Zhang, C., Heiselberg, P. and Nielsen, P., 2014. Diffuse Ceiling Ventilation A Review. *International Journal of Ventilation*, 13(1), pp.49-64.
- [3] 2019. EN 16798. 2nd ed. Copenhagen: Danish Standards Foundation, Table B.6.
- [4] System Air. n.d. *Danvent DV*. [online] Available at: <https://shop.systemair.com/en/danvent--dv/p101646> [Accessed 13 May 2021].
- [5] Bygningsreglementet. 2018. Lavenergiklasse. [online] Available at: <https://bygningsreglementet.dk/Ovrigebestemmelser/25/Krav/473_484#:~:text=Volumenstr%C3%B8 mmen%20gennem%20ut%C3%A6theder%20i%20klimask%C 3%A6rmen,en%20trykforskel%20p%C3%A5%2050%20Pa.&te xt=Kravet%20kan%20dokumenteres%20ved%20at,repr%C3% A6sentative%20dele%20af%20st%C3%B8rre%20bygninger.> [Accessed 13 May 2021].
- [6] Bygningsreglementet. 2018. *2.4 Specifikt elforbrug til lufttransport (SEL-værdi)*. [online] Available at: https://bygningsreglementet.dk/Tekniske-bestemmelser/11/BRV/Funktionsafprovning/Specifikt-elforbrug#83f5ed4d-8fe4-4923-ac52-69ade0ae8eb2 [Accessed 13 May 2021].
- [7] 2011. *EN 12464*. 2nd ed. Charlottenlund: Danish Standards Foundation.
- [8] van der Schee, W., n.d. *Water systems in high rise residential buildings, guide lines for design and construction*.
- [9] n.d. Samlet positivliste over Energimærknings-certifikater. [ebook] Energivinduer.dk. Available at: <https://energivinduer.dk/wp-content/uploads/sites/3/positiv_120521.pdf> [Accessed 14 May 2021].
- [10] Energivinduer. 2021. Energimærkningscertifikat for facadevinduer Reg.nr. 536-1.1. [online] Available at: https://energivinduer.dk/wp-content/uploads/sites/3/536-1.1_010321.pdf> [Accessed 21 June 2021].
- [11] Engineering ToolBox, (2003). Hot Water Consumption per Occupant. [online] Available at: https://www.engineeringtoolbox.com/hot-water-consumption-person-d_91.html [Accessed 22 June 2021].
- [12] Hawkins, G., 2011. *Rules of thumb*. Bracknell: BSRIA.
- [13] Slides "Ventilation planning 11080 F20"

MEP

- [14] Novenco-building.com. 2021. *Car park system description*. [online] Available at: <https://www.novencobuilding.com/solutions/car-park-system-description/> [Accessed 22 June 2021].
- [15] Ovesen, K, 2000. SBI- anvisning 175: Varmeanlag med vand som medium. 1. ed.: Staten Byggeforskningsinsitut

[16] What are the advantages of siphonic roof drainage? [online] Available at: <<u>https://www.wavin.com/en-en/news-</u> <u>cases/news/what-are-the-advantages-of-siphonic-roof-drainage</u>/> [Accessed 27 June 2021].

Appendix A – Space types and ventilation rate calculations

		Ventilation		People load			Ventilation	
		demand [l/s]	People load	according to		Concurrency	demand with	Ventilation
		(EN/DS 16798-	• ·		%-	factor used for		demand in
Level	Zone	1)	1)	plans	difference	dimensioning		zone
Level 0		3071	291		0.69	0.7		
Level 1	Zone 3	2534	211	170	0.81	0.85		
Level 2	20110 3	5362	612	340	0.56	0.6	3217.02	
Level 3		2795	91	60	0.66	0.7	1956.78	9477.455
Level 4		1449	104	47	0.45		1014.51	
Level 5		1449	104	47	0.45		1014.51	
Level 6		1449	104	47	0.45		1014.51	
Level 7		2059	193	95	0.49	9 0.7	1441.51	
Level 8		1477	108	60	0.56		1034.18	
Level 9		1477	108	60	0.56		1034.18	
Level 10	Zone 2	1477	108	60	0.56		1034.18	7587.58
Level 11		1477	108	60	0.56		1034.18	
Level 12		1477	108	60	0.56		1034.18	
Level 13		1477	108	60	0.56		1034.18	
Level 14		1477	108	60	0.56	0.7	1034.18	
Level 15 Sky Bar		2978	331	80	0.24		2084.53	
Level 16 Sky Bar	Zone 1	2423	252	35	0.14		1696.31	7917.56
SUM		35912	3048	1541	0.51		24983	

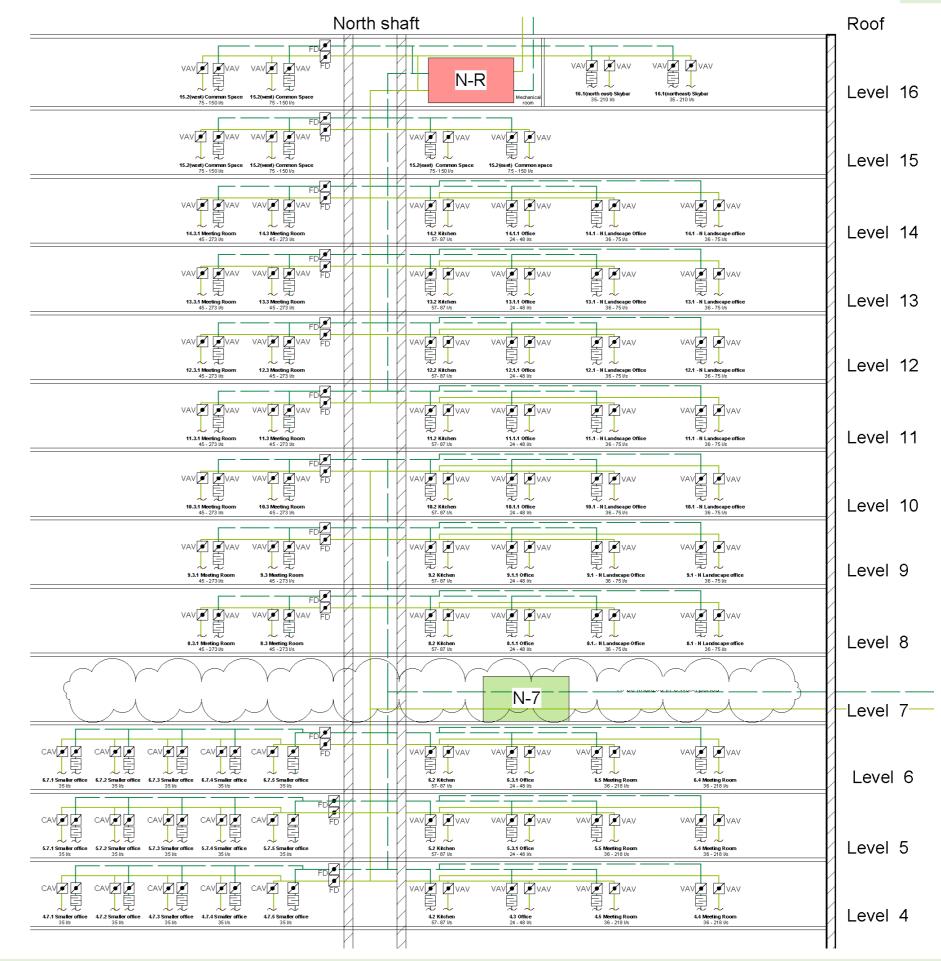
Table A1: Overview of the ventilation of different level according to DS/EN 16798, occupancy loads and concurrency factors.

MEP

Space type	Ventilation rate	Person/area	Note	Area
Corridors	$0.7 \ l/(s \cdot m^2)$	-	Table B.6 - EN/DS 16798-2	3576
Office rooms	1.4 $l/(s \cdot m^2)$	10 m ² /person	Table B.6 - EN/DS 16798-2	5089
Mixed area	1.2 $l/(s \cdot m^2)$	15 m^2 /person	Table B.6 - EN/DS 16798-2	3550
Meeting rooms and printer room	4.2 $l/(s \cdot m^2)$	2 m ² /person	Table B.6 - EN/DS 16798-2 And assumption	1915
Gym	Gym $5 l/(s \cdot m^2)$		Assumption, based on other room types	352
Restaurant	5.4 $l/(s \cdot m^2)$	1.5 m ² /person	Table B.6 - EN/DS 16798-2	1064
Kitchen	4.2 $l/(s \cdot m^2)$	-	Assumption, based on other room types	103
Toilet	10 l/(s · toilet)	$0 m^2$ /person	From table B.13 in EN/DS 16798-1	204
Auditoriums	10 $l/(s \cdot m^2)$	0.75 m^2 /person	Table B.6 - EN/DS 16798-2	517
Technical rooms & shaft	$() / / / (s \cdot m^2)$		Table B.6 - EN/DS 16798-2	1439
Shower room	$5 l/(s \cdot m^2)$	-	From table B.13 in EN/DS 16798-1 and assumtion	73

Table A2: Overview of different space assigned to different spaces on all unique floors in Revit. The unique floors are the ground floor, level 1-4, level 7, level 8, level 15 and level 16. Level 4-6 have the one layout and level 8-14 have another layout, that are the same for those floors.

Appendix B – Schematic ventilation drawing


Table B1: The figure shows the principle of the distribution of air from the AHU's placed on the level 16 and 7 respectively. It is seen that for all meeting rooms and landscape offices CAV ventilation are used, where for bigger landscape offices VAV are used to accommodate different occupancies. Fire dampers are placed at all horizontal shaft that goes in or out of the shafts. Silencers are placed where the ducts runs from the corridors to the rooms.

The AHUs at the level 7 and 16 have intake and discharge through the façade, where the AHUs in the basement have intake and discharge through light shafts in the terrain.

- Ventilation duct return
- Ventilation duct supply
- Constant Air Volume Damper
- Variable Air Volume Damper
- Fire Damper
- Silencer

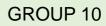
Appendix C – Pressure loss in horizontal ducting

Northern system							
Horizontal ducts							
	0.30						
	1.62						
	0.65						
	1.09						
	1.18 Pa						
	0.94						
	1.10						
	0.84						
	1.88						
	0.35						
Total	9.95Pa						
Vertical duct	S						
Length	11.6m						
Friction	0.6Pa/m						
Total	7.0Pa						
Pressure drop from	one AHU						
Totalt pressure loss for the system	16.9Pa						
With 25% correction for elbows and branches	21.1 ≈ 21Pa						


Southern system							
Horizontal ducts							
	0.90						
	1.38						
	2.39						
	1.34 1.12 ^{Pa}						
	1.12 ^{Pa}						
	0.12						
	1.22						
	0.98						
Total	9.45Pa						
Vertical ducts	S						
Length	11.60m						
Friction	0.50Pa/m						
Total	7.0Pa						
Pressure drop from c	one AHU						
Totalt pressure loss for the system	16.4Pa						
With 25% correction for elbows and branches	20.5 ≈ 21Pa						

Figure C1: Highlighting the routes to the farthest air terminal for both the northern and southern system.

DTU ₩ MEP



Appendix D – Links to datasheets

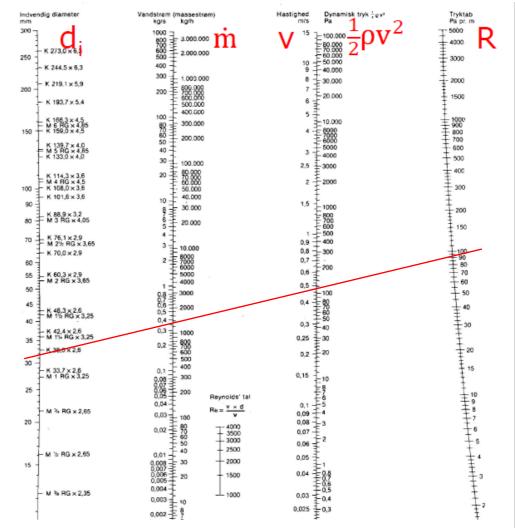
Datasheet number	Element	Link	Note
1	AHU	https://shop.systemair.com/upload/as sets/GENIOX_CATALOGUE_GLOBAL_2 020_E2602.PDF	On page 14 appr noted for a Genic systemair. In the used and 2 size 2 the units is calcu
2	Fan Coil Unit	https://shop.systemair.com/upload/as sets/54624_IOM_SYSCOIL2_01-N- 3GB.PDF	
3	Windows	https://energivinduer.dk/wp- content/uploads/sites/3/536-1.pdf	
4	Jet fans	https://www.novenco- building.com/media/1331/jet-fans- cat-gb-mu16102-0621.pdf	

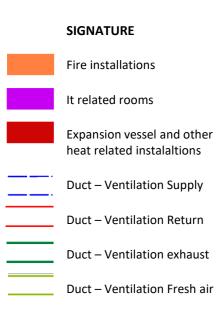
proximately sizes is niox AHU form ne project 4 size 24 is e 27. The exact sizes of culated with systemair.

Appendix E – Calculation for hydronic installations

	Level	Alti- tude	Static pressure [kPa]								
		[m]	Riser 1	Riser 2	Riser 3	Riser 4	Riser 5				
Sky bar	16	64	0								
	15	60	40								
	14	56	80		0						
	13	52	120		40						
	12	48	160		80						
	11	44	200		120						
	10	40	240		160						
Tower	9	37	270		190						
TOWER	8	33		0		0					
	7	29		40		40					
	6	25		80		80					
	5	21		120		110					
	4	17		160		150					
	3	14		190			0				
	2	10		230			40				
Pedestal	1	6		270			80				
	0	0		330			110				
Basement	-1	-4					150				

Table E1: Statical Pressure of the five vertical risers, calculated under the assumptions that the static pressure riser 10 kPa/m.




Figure E1: The mass flow(1320 kg/h) found in table H2 is used estimate a diameter of the horizontal main pipes on level 4. Since the water is running in steel pipes, the pressure loss, needs to be under 100 Pa/m which results in a pipe with an internal diameter of 38 mm. The monogram is from SBI-anvisning 175, p 164. [

	Heat loss calculation for level 4										
Construction Element	Numbers / percentage	Length [m]	Height [m]	Areal [m2]	Areal fradag [m2]	Effective area [m2]	U-value [W/m2K]	Temp difference [C]	Heat loss [W]		
Exterior wall	1	134.6	3.86	520	215.0792	304	0.15	32	1478		
Window (W)	0.5	43.5	3.86	84	0	84	0.9	32	2418		
Window (E)	0.3	44.2	3.86	51	0	51	0.9	32	1474		
Window (S)	0.4	27.4	3.86	42	0	42	0.9	32	1218		
Window (N)	0.5	19.5	3.86	38	0	38	0.9	32	1084		
Heat loss:					7672						
With SF (2)	15344										
Mass flow (kg/h)	1320										
Volume flow (I/s)					0.37						

Table E2: Heat loss calculation of level 4. A security factor of 2 is used due to very simplified calculation without infiltration loss, line loss and ventilations loss.

Appendix F – Floor plans of the technical floors

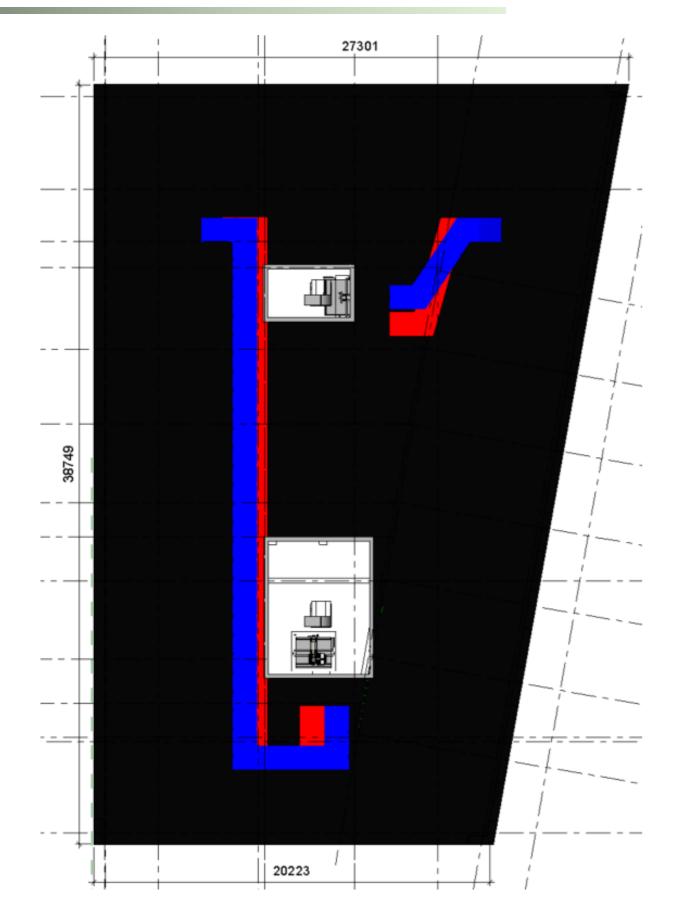


Figure F1: Plan of level 7 where the technical room is located'. Since the two shafts are placed in the northern and southern end of the building and the architects would like to avoid dead ends around the core, the technical rooms was split into to. Beside space for the ventilation units, the technical rooms have space for booster pumps for the fire installations, expansion vessels for the heating system and space for it related installations

Appendix F – Floor plans of the technical floors

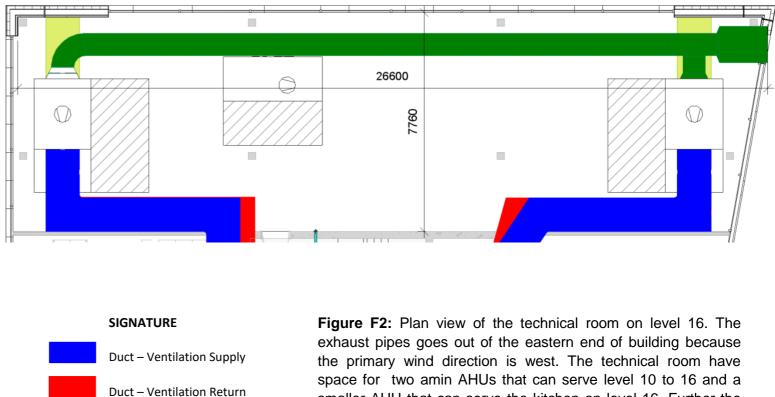


Figure F3: Plan view of the roof and the routing of the ducts along the roof from the technical room to the shafts. The supply duct will be insulated to secure a steady temperature of the air from the air handling unit to the air terminals. The ducts runs over the roof to spare space in the suspended ceiling on level 16 and to meet the wishes of the architects for at terrasse towards the south connected with the restaurant.

Duct – Ventilation exhaust

Duct – Ventilation Fresh air

MEP

smaller AHU that can serve the kitchen on level 16. Further the room have plenty of space for fire ventilation and expansion vessel connected to the heating system.

Appendix G – Area calculations and assumptions for the technical floors

	Area	a (m2)		
		Level		
Type of technical service	Basement	Level 7	16	Note
Hydronic installations for fire	122			Divided in to three areas in the basement: Two have space for pumps and other equipment, and the last have space for a water tank with a volume of 110m2. The area are based on the rule of thumb from the powerpoint slides (kilde).
Fire ventilation	50	36	35	The area of the fire ventilation in the basement are based on the smaller units that are needed to ventilate the auditoriums and covers an area of 50 m2. An area of 18 m2 in both technical rooms on level 7 are also left for fire installations if needed. On level 16 45 m2 are dedicated to fire ventilations installations for pressurization of the staircases and elevators
Ventilation	200	107	135	The air handling units and the ducts are modelled in revit to figure out the routing and the space that they take up. Overall an area of 100 m2 with double height are used for the ventilation unit and 100 m2 for ducting in the basement. On level 7 the twon AHU's are placed in two different technical rooms, taking up 60m2 and 47 m2 respectively. On Level 16 all AHU's are placed in the same room, the two main AHUs and routing requires 105 m2, addtionally 30 m2 are dedicated to at smaller unit, that can serve the kicthen.
Heating	40	18	15	The area of both heating installations and the water tank in the basement are based on figure 11 from the BSRIA handbook. To avoid to high pressure on the expansion tank this one is placed at level 16 and 7.
Water tank, hot water	Volume: 9m3	-	-	According to engineeringtoolbook [11] the size of the water tank needs to be 5I /occupant in offices. According to the architects the building is designed for 1540 occupants, thus the tank has to have a volume of 7.7 m3, to ensure enough hot water even if the use of the building change with a volumen of 9 m3 is drawn in Revit and used in the BE18 calculatins.
Coldwater	7	-	-	A smaller space for the intake of cold water from the city grid are placed next to the hotwater tank, se secure easy routing and space for expansin tank and pumps.
Cooling	30	-	-	From the Grasshopper thermal simulations, the peak cooling loads is known to be 11.3 kW. The simulated area only covers approximately 50% of the cooled floor area thus 50% is added and the the number are then multiplied by the numbers of floors in the building (16). This give an estimated peak cooling load of 271 kW, which according to figure 15 in the BSRIA Handbook[12] needs service station for cooled chillers of 35 m2. DTU have district cooling which requires less space than water wooled chillers and in is assumed that 30 m2 is sufficienT.
Electricity	-	16	-	According to the BRASIA Handbook[12] an office building normally uses 62W/m2, which give a collected use of 1178 kW for the building (the heated area is 19000 m2). The southern technical room on level 7 have 18 m2 of space for technical installations.
Serverroom	55	-	-	The use of IT will grow in the future, thus a big serverroom are assigned 55 m2.
Transformer room	30	-	-	Figure 37 in the BSRIA Handbook[12] show that for at electricity use of 1178 kW the transformer room needs to be 15 m2 and a height of 3.1 m. The building don't fulfill the height requirements, thus a room of 30 m2 is assigned
Emergency Power	30	-	-	According to figure 25 in the BSRIA Handbook[12] the room for an emergency generator need 25 m2 and a height of 3.1 m, thus a slightly larger room is assigned
It & switchroom	35	-	-	According to figure 35 in the BSRIA Handbook[12] the room for a switches and distribution needs to be 30 m2 and has a height of 4m, thus a part of the double height basement is assigned.
Extra room for it /storage	25	-	-	Due to uncertainties about the size of the IT-room and other service station are room is left for unforseen service station or storage.
Waste	20			Space for a container and a waste suction to the road.
Corridors / space for routing	156	33	10	
Sum of areas	800	210	195	

Time [hours]	Occ. Load [%] General
8-11	80
11-13	25
13-16	50
16-17	25

Time [hours]	Occ. Load [%] Meeting Rooms
8-12	100
12-13	0
13-15	100
15-17	50

Table 1	m² pr. person	Watt/per- son	Equipment Watt /person	Lighting W/m ²	Other equipment W/m ²	Notes	Note 1: Ar buffet area
Landscape office	10	90	90	5	3	Note 3,5	Note 2: He kitchen de
Single office	12	90	90	7	3		
Print and copying room				10	100		Note 5: Th floor area
Reception	20			8	3	 	areas, bre
Canteen	1.5	90		5	3	Note 1	landscape
Kitchen incl. secondary spaces					3	Note 2	m2/persor
Meeting rooms	2	90	25	8	20	Note 4	

Note 1: Area calculat buffet area.

Note 2: Heat gain determined after kitchen design.

Note 5: The area includes the whole floor area including corridors, walking areas, break-out spaces etc. In practice the occupancy load in the landscape office is probably 6-7 m2/person.

Reference: http://agilex.io/F21/DX/11080/MEP/regs

Area calculated excluding

Appendix I – Be18 Choices and Assumptions

Front page	Value	Unit	Comment	Source
Heated foor area	18953	3m2	Extracted from the revit model by the architects see appendix J table J2	
Heated basement	1953	3m2	Extracted from the revit model	
Developed area	1229)m2	Extracted from the revit model	
Heat capacity	62	Wh/K	Se table appendix J table J3	
/		m2		
Mechanical cooling - Share of floor area	0.73	3-	Non-cooled areas: Walls, shower room, toilets, shafts, and technical rooms	
Building envelope	Value	Unit	Comment	Source
Areas	See appendix K	m2	Outer walls are divided into orientations	
U-value			The building envelope scores 10 points regarding the DGNB criteria for building envelope for both the roof, exterior wall, and basement floor, and scores 7.5 point for the basement walls. Se appendix L for the calculations of the U-values.	[1]
Line losses	Value	Unit	Comment	Source
Length	Windows: 12889 Roof: 173 Pedestal: 166 Foundation: 171 Walls towards cold basement: 304	m	Line loss length are found through the revit model for the roof, pedestal level, and the foundation. For line losses form the windows see appendix K table K4	
Line loss	DGNB ETC 1.3	W/mK	The line losses are found from the DGNB TEC 1.3 criteria and are assumed to obtain the	[1]
Windows	Value	Unit	maximum amount of points. Windows: 0.03, others: 0.3. Comment	Source
Orientation	N: 15		The entire east facade is assumed to have the same orientation, even though some of the	Jource
onentation	E: 120 S: 195 W: 285	uegree	facede is faceing 105 degrees.	
Area	See appendix K	m2	The facades varries in glazing areas in relation to the floor height and their orientation found though. The glazing ratios and area calculation can be seen in table K3.	
U-value	0.7	NV/m2K	Low energy windows - Schüco Nordic Alu-inside	[10]
Frame fraction (Ff)	0.7		Low energy windows - Schüco Nordic Alu-Inside	[10]
g-value	0.37	-	Low energy windows - Schüco Nordic Alu-inside	[10]
Shadow	See below	-	Shadow values are set to the defalut value for all orientations.	
Shading	Value	Unit	Comment	Source
Left	North: 0 South: 17 East and west: 32	degree	Shadow angels from the sun shading panels are found in appendix M	
Right	North: 0 South: 17 East and west: 32	degree	Shadow angels from the sun shading panels are found in appendix M	
Ventilation	Value	Unit	Comment	Source
The relative operation		_	The relative operation time is set to 1 for most room types. Though, for the meeting rooms in	
time (Fo)			use, it is set to 0.8 (and 0.2 for meeting rooms not in use), for the auditorium it is set to 0.7 when in use, and for the sky bar the value in use is set to 0.8.	
Mech. Vent. (qm)	Corridors: 0.8 Mixed: 1.167 Tech: 0.7 Others: 1.2	l/s m2	The cut-off value of 1.2 is valid for most of the room types. The minimum ventilation rate is set for the technical rooms, which is ventilated with 0.7 l/s m2 to secure the ventilation of building emissions for a low polluted building. The mixed areas are assumed to have 15 m2 pr. person, and the vantilation rate is set to fit this need.	
Heat recovery (n vgv)	0.84	l-	The heat recovery value is found through optimizations from SystemairCAD, which can be seen in appendix X and are for all units rounded to be 0.84.	
	0.000	2l/s m2	There is no natural ventilation in the building, so the value here is valid for the infiltration	[5]
Nat. vent. winter (qn)	0.082		instead. The value is set to follow the infiltration for a low energy building according to BR18 when the building is occupied.	
		2l/s m2	instead. The value is set to follow the infiltration for a low energy building according to BR18	[5]
Nat. vent night (qi,n) Specific fan power			instead. The value is set to follow the infiltration for a low energy building according to BR18 when the building is occupied. Infiltration for a low energy building according to BR18 during the time of no occupancy. The SFP-values are found through optimizations made in SystemairCAD. The specific zone type's SFP-value are found as a mean of the units used for the zone types, fx are the offices only placed in the tower region. Therefore the offices SFP is found as a mean between 0.8 and	[5]
Nat. vent night (qi,n) Specific fan power (SFP)	0.042 Pedestal: 0.83 Level 4-10: 0.8	2l/s m2	instead. The value is set to follow the infiltration for a low energy building according to BR18 when the building is occupied. Infiltration for a low energy building according to BR18 during the time of no occupancy. The SFP-values are found through optimizations made in SystemairCAD. The specific zone type's SFP-value are found as a mean of the units used for the zone types, fx are the offices	
Nat. vent night (qi,n) Specific fan power (SFP) Max mech. vent. (qm,s) Nat. vent. summer	0.042 Pedestal: 0.83 Level 4-10: 0.8 Level 11-16: 0.82 Corridors: 0.8 Mixed: 1.167 Tech: 0.7 Others: 1.2	2l/s m2 kJ/m3	instead. The value is set to follow the infiltration for a low energy building according to BR18 when the building is occupied. Infiltration for a low energy building according to BR18 during the time of no occupancy. The SFP-values are found through optimizations made in SystemairCAD. The specific zone type's SFP-value are found as a mean of the units used for the zone types, fx are the offices only placed in the tower region. Therefore the offices SFP is found as a mean between 0.8 and 0.82. The maximum mechanical ventilation is set to be the same as the normal ventilation rate, due to the fan coils installed where cooling is needed. Fan coils will be regulating the thermal	
Nat. vent night (qi,n) Specific fan power (SFP) Max mech. vent. (qm,s)	0.042 Pedestal: 0.83 Level 4-10: 0.8 Level 11-16: 0.82 Corridors: 0.8 Mixed: 1.167 Tech: 0.7 Others: 1.2 0.082	2l/s m2 kJ/m3 l/s m2	 instead. The value is set to follow the infiltration for a low energy building according to BR18 when the building is occupied. Infiltration for a low energy building according to BR18 during the time of no occupancy. The SFP-values are found through optimizations made in SystemairCAD. The specific zone type's SFP-value are found as a mean of the units used for the zone types, fx are the offices only placed in the tower region. Therefore the offices SFP is found as a mean between 0.8 and 0.82. The maximum mechanical ventilation is set to be the same as the normal ventilation rate, due to the fan coils installed where cooling is needed. Fan coils will be regulating the thermal indoor climate instead of the ventilation. 	

DTU

MEP

Lighting	Value		Unit	Comment
Power when lighting is off		0.2	2W/m2	Assuming the light still uses a small a
Power when lighting is on			W/m2	To be able to calculate the power ne entire building is lit-up by LED lamps tungsten.
Required lux level			lux	The required lux level is found accor lux is applied for the rooms with high and kitchen in the sky bar).
Daylight factor	0-2		%	The daylight is varying throughout the
Control	Zones with daylight Auditorium: U Others: U	: K		In zones with daylight the lighting is room. In the auditorium and the oth manually.
Operation time	Meeting room: 0.8 Auditorium: 0.7 Sky bar: 0.8 Others: 1			Assuming the light is not on the enti auditorium, and sky bar.
Power due to task lighting		1	.W/m2	The power due to task lighting is set one desk lamp (10 W) per person an
Stand-by		0.2	2W/m2	Assuming the light still uses a small a
Mechanical cooling	Value		Unit	Comment
El-demand (1/cop)		0.25	ikWh- el/kWh- cool	The cop value is set to 3 to follow a s
Heat distribution plant	Value		Unit	Comment
Supply pipe temperature		45	5°C	To obtain the maximum amount of p heating system and heating distribut
Hot water tanks	Value		Unit	Comment
Number of tanks		1	-	Two pressure zones are needed - see
Tank volume	1	.000)L	Asumption
Heat loss from hot-water tank		1.8	SW/K	Assumption made based on the Be1 W/K
Circulation pipes	Value		Unit	Comment
Pipes for hot water		396	öl (m)	Height of risers: 1: 68 m, 2: 37 m, 3: 60 m, 4: 4 m, 5: 2
Pipes for hot water			Loss (W/mK)	
District heat exchanger	Value		Unit	Comment
Nominal effect		360)kW	The nominal effect is set to overcom which is shown on the front page of
Solar cells	Value		Unit	Comment
				No solar cells are installed on the bu

Table 11: Comments for the different input parameters to Be18. When it is not mentioned in the table a default value has been used instead.

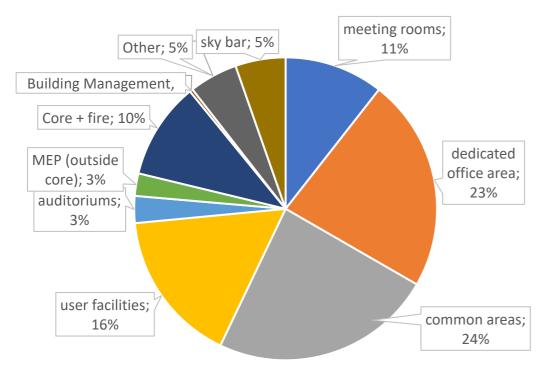
03

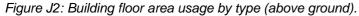
	Source
a small amount of power even though it is off.	
power need for the lighting it is assumed that the ED lamps except for the sky bar, which is lit-up by	
nd according to EN 12464, but a cut-off value of 300 with higher lux level (meeting rooms, auditoriums,	[7]
ughout the building.	
ghting is contorled by the daylight censor in the daylight censor in the daylight is controlled	
the entire operation time for the meeting room,	
ing is set to 1 W/m2 in the office zones. Assuming erson and each person having 10 m2.	
a small amount of power even though it is off.	
	Source
follow a standard value.	
	Source
ount of points for the DGNB demand TEC 1.4 for distribution	[1]
	Source
eded - see the hydronic installation section.	
the Be18 examples, which lies between 1.5 and 1.8	
	Source
4 m, 5: 29 m	
	_
	Source
overcome the ventilation loss with HRV (in winter), page of the Be18 sheet (357.5 kW)	
	Source

Appendix J – Building Area and Heat Capacity

Building area above ground	Area (m2)
common meeting rooms	1130
rented office area	7339
Open Offices	6379
Single/ Double Offices	960
rented gym/restaurant/cafeteria	2234
Sky Bar	898
Gym	911
Cafeteria	425
Public common areas	3171
public facilities (excl. Cafeteria)	817
Auditoriums	504
Bathrooms, Kitchens, Changing	313
MEP (outside core)	421
Core + fire	1811
Building Management	60
Total	16982

Build	ling area	
	%	Area (m2)
Offices	23	3906
Corridors	20	3396
Toilets	4	679
Meeting room	11	1863
Auditorium	3	504
Sky bar	4	679
Gym	5	911
Mixed	15	2547
Cores & shaft	13	2208
Shower room	1	136
Kitchen (sky bar)	1	153
Total area above groun	nd	16982
Heated basement		1953
Total heated building a	rea	18935


Table J2: Area distribution for ventilation and lightining based on table J1 and figure J2.


Table J1: Architects area distribution above ground.

DTU

₩

MEP

Heat capacity calculation

Ydervægsareal eks. vinduer og døre	11200	11200 Det totale ydervægsareal Indtastning kun i de gule fe							
Etageareal	17000	Det totale ar	eal for hele by	gningen					
Bygningens kompakthed	0.66								
Rumstørrelser 1= små (boliger),									
2= mellem,	3								
3= store (storrumskontorer og klasseværelser)									
		Varmekapac			Areal for konstruktion				
		itet			(Hvis det er en enkel				
		net			bygning, kan tallet 1				
Indvendige overflader					indsættes i stedet for				
		Wh/K m ²			areal i de gule felter				
					herunder):				
Loft				samlet:	1				
Gips (ét lag)		3		-					
Nedhængt loft		3		3.0	1				
Klinkebeton (1.800 kg/m ³)		45		-					
Beton (2.400 kg/m ³)		60		-					
Gulv				samlet:	1				
Trægulv på isolering		4		-					
Trægulv på strøer på beton		10		10.0	1				
Hævet gulv over beton		10		-					
Trægulv med dug på beton		17		-					
Tæppe på beton		30		-					
Klinkebeton evt. med klinker (1.800 kg/m³)		45		-					
Linoleum på beton		53		-					
Beton evt. med klinker (2.400 kg/m ³)		60		-					
	Bygn	ingens kompa	akthed						
Vdonumano	Lille	Mellem	Stor	samlet:					
Ydervægge	>0,65	0,65-0,25	<0,25	samet.	1				
Gipsplader (to lag)	4	3	2	-					
Porebeton (535 kg/m ³)	10	7	4	5.0	0.5				
Tegl (1.500 kg/m ³)	25	17	9	-					
Klinkebeton (1.800 kg/m³)	33	23	13	-					
Beton (2.400 kg/m³) (stål)	43	30	17	21.5	0.5				
		Rumstørrelse	r						
			Store						
	Små		(storrumsko						
Skillevægge	(boliger)	Mellem	ntorer og	samlet:	1				
	(poliger)		klasseværesl						
			er)						
Gipsplader (to lag)	13	7	4	2.0	0.5				
Porebeton (535 kg/m³)	15	7	4	-					
Tegl (1.500 kg/m³)	38	19	11	-					
Klinkebeton (1.800 kg/m³)	50	25	15	-					
Beton (2.400 kg/m ³)	67	33	20	10.0	0.5				
Inventar		10		10					
Resultat				62					
Table J3: Calculations for the build	lina's heat	t canacity							
	iiiiy s iical								

Table J3: Calculations for the building's heat capacity.

	Basement wa	lls	
	Perimeter (m)	Height (m)	Wall area (m2)
Level - 1	142	4	530
Level -2	125	3	420
		Total	950,8

Building wall (including wndows)											
North West South Southeast East											
Pedestal (floor 1 to 3)	415	786	330	524	284						
Tower (per floor)	105	167	76	152	-						
Skybar (floor 15 and 16)	211	299	156	304	-						

Table K1: The area of the basement walls found from figure K1 and K2.

Table K2: The total area of the building envelope for the different levels found from figure K3 and K4.

Level -2

_

			Glazing ratio (%)					Glazing area (m2)				Wall area (m2)				
	Floor	North	Southeast	West	South	East	North	Southeast	West	South	East	North	Southeast	West	South	East
Pedestal	1 to 3	60	60	60	60	0	249	171	472	198	0	166	114	314	132	284
	4	50	48	50	40	-	53	73	84	30	-	53	79	84	45	-
	5	50	45	50	40	-	53	69	84	30	-	53	84	84	45	-
	6	50	43	50	40	-	53	66	84	30	-	53	87	84	45	-
	7	50	40	50	40	-	53	61	84	30	-	53	91	84	45	-
	8	50	37	50	40	-	53	56	84	30	-	53	96	84	45	-
Tower	9	50	35	50	40	-	53	53	84	30	-	53	99	84	45	-
	10	50	32	50	40	-	53	49	84	30	-	53	104	84	45	-
	11	50	30	50	40	-	53	46	84	30	-	53	107	84	45	-
	12	50	30	50	40	-	53	46	84	30	-	53	107	84	45	-
	13	50	30	50	40	-	53	46	84	30	-	53	107	84	45	-
	14	50	30	50	40	-	53	46	84	30	-	53	107	84	45	-
Sky bar	15 and 16	50	30	50	40	-	105	91	149	63	-	105	213	149	94	-
					Т	otal area	934	872	1540	594	0	851	1394	1383	725	284

Line

Total window Assumed win Assumed win Assumed area Number of wi Window circu Line loss due

type [10].

Table K3: The calculation to support the areas for the building envelope is based on glass ratio and orientation of the building. The glass ratios are found through the sensitivity analysis.

Level -1

Figure K1: Section of level –1 and –2 to show levels' heights.

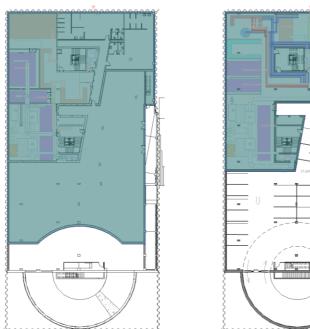


Figure K2: Plan view of level -1 and -2, where the heated area is highlighted with green.

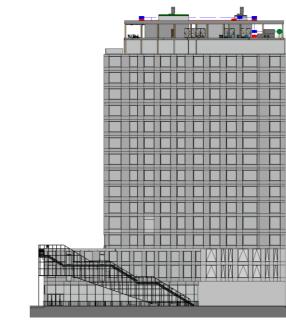


Figure K3: Elevation of the building from the eastern side to show the height of the pedestal, a floor in the tower section and the sky bar.

West

loss due to windows [m	n]
area [m2]	4348
dow height [m]	1,48
dow width [m]	1,24
a of each window [m2]	1,84
indows [-]	2369
imference [m]	5,44
to windows [m]	12889

Table K4: The line losses from windows are based on the assumption that each window has a dimension of 1.48x1.84 m, which is the standard dimension of the applied window

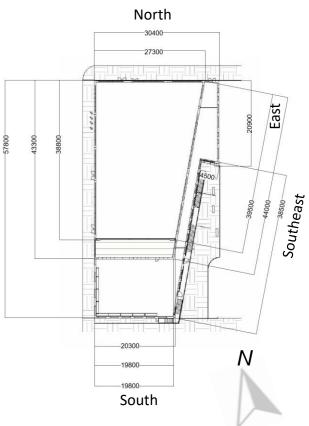
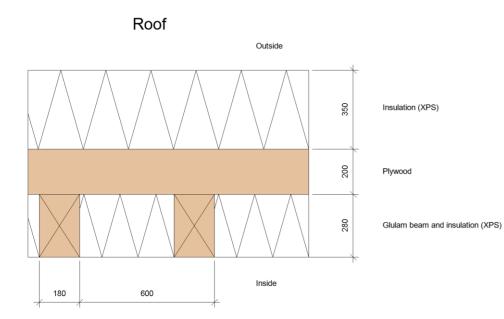
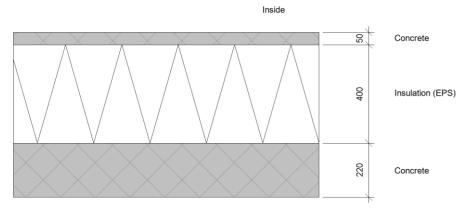



Figure K4: Building seen from the top to show the building envelope's dimensions.

GROUP 10

32

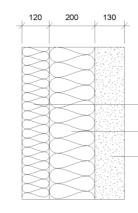
Appendix C – U-values and illustration of thermal layers


	Roof		
Layer	Thickness	Thermal conductivi ty	Isolation property
	d	À	R
	[m]	[W/mK]	[m²K/W]
Outside surface	-	-	0.04
Insulation (XPS)	0.350	0.038	9.21
LVL	0.100	0.140	0.71
Glulam beam	0.112	0.110	1.02
Insulation (XPS)	0.148	0.038	3.90
Gypsum	0.050	0.520	0.10
Inside surface	-	-	0.10
	∑R	(m²K/W) =	15.08
Sim	0.07		
Corrected (50	0.10		
Corrected (100)%) U-value	(W/m²K) =	0.20

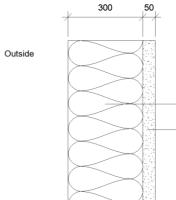
	Exterior wall		
Layer	Thickness	Thickness Thermal I conductivity	
	d	λ	R
	[m]	[W/mK]	[m²K/W]
Outside surface	-	-	0.04
Insulation cl. 34	0.118	0.034	3.459
Steel	0.002	35.00	0.000
Insulation cl. 34	0.196	0.034	5.765
Steel	0.004	35.00	0.000
Gypsum	0.130	0.520	0.250
Inside surface	-	-	0.130
	Σ	R (m²K/W) =	9.6
S	0.10		
Corrected	0.15		
Corrected (100%) U-valu	ie (W/m²K) =	0.20

Basement wall								
Layer	Thickness	Thermal Thickness conductivit Y						
	d	λ	R					
	[m]	[W/mK]	[m²K/W]					
Insulation	0.294	0.037	7.95					
Steel	0.006	35.000	0.00					
Gypsum	0.050	0.520	0.10					
	Σ	R (m²K/W) =	8.04					
	Simple U-valu	e (W/m²K) =	0.12					
Correct	0.19							
Correcte	0.25							

Floor between heate	ed and non-he	ated baseme	nt
Layer	Thickness	Thermal conductivity	Isolation property
	d	٨	R
	[m]	[W/mK]	[m²K/W]
Inside surface	-	-	0.170
Concrete	0.05	1900	0.026
Insulation (EPS)	0.400	0.038	10.526
Concrete	0.220	1900	0.116
Outside (cold basement) surface	-	-	0.170
		∑R (m²K/W) =	11.01
	0.09		
Correct	ed (50%) U-va	lue (W/m²K) =	0.14
Correcte	d (100%) U-va	lue (W/m²K) =	0.18



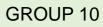
Outside

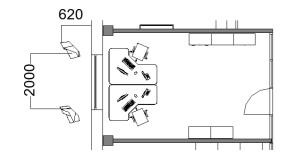

Outside

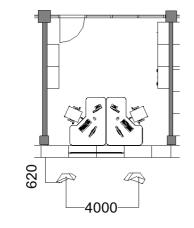
Exterior wall

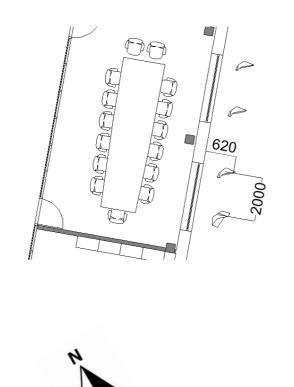
Inside

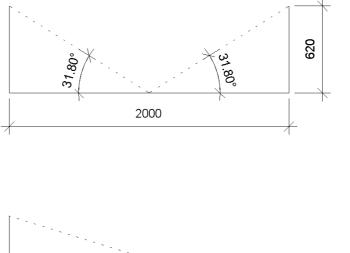
Insulation (98%) and steel binders (2%) Insulation (98%) and steel binders (2%) Gypsum

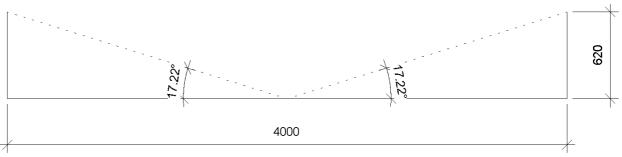

Basement wall


Inside


Insulation (98%) and steel binders (2%)


Gypsum




Appendix M – Shading

Appendix N – Be18 documentation

Model: The Building - Low U-values	SBi Beregningskerne 10.19.7.22
Be18 key numbers: 110)80 Group 10
Transmission los	s, W/m ²
Tramission loss frame, normal	12,4
Tramission loss frame, low energy	11,4
Tramission loss, calculated	6,7
Renovation class 2, k	Wh/m² year
Energy frame renovation class 2, without addition	95,1
Addition for special terms	0,0
Total energy frame	95,1
Total energy requirement	33,0
Renovation class 1, k	Wh/m² year
Energy frame renovation class 1, without addition	71,4
Addition for special terms	0,0
Total energy frame	71,4
Total energy requirement	33,0
Energy frame BR 2018,	kWh/m ² year
Energy frame BR 2018, without addition	41,1
Addition for special terms	0,0
Total energy frame	41,1
Total energy requirement	33,0
Energy frame low energy	y, kWh/m² year
Energy frame low energy, without addition	33,0
Addition for special terms	0,0
Total energy frame	33,0
Total energy requirement	33,0
Contribution to energy requir	ement, kWh/m² year
Heating	15,4
El. for service of buildings	10,5
Excess temperature in rooms	0,0
Net requirement, kV	Vh/m² year
Room heating	8,9
Domestic hot water	6,5
Cooling	1,9
Selected el. requirements	s, kWh/m² year
Lighting	5,7
Heating of rooms	0,0
Heating of domestic hot water	0,4
Heat pump	0,0

Model: The Building - Low U-values	SBi Beregningskerne 10.19.7.22
Ventilators	3,5
Pumps	0,5
Cooling	0,7
Heat loss from installations, k	Wh/m² year
Room heating	0,0
Domestic hot water	1,2
Output from special sources, l	kWh/m² year
Solar heat	0,0
Heat pump	0,0
Solar cells	0,0
Wind mills	0,0
Total el. requirement, kW	h/m² year
El. requirement	23,9

Be18 model: The Building - Low U-values

	11080 Group 10					
The building						
Building type	Other					
Rotation	0,0 deg					
Area of heated floor	18953,0 m ²					
Area heated basement	1953,0 m ²					
Area existing / other usage	0,0 m ²					
Heated gross area incl. basement	19929,5 m ²					
Heat capacity	62,0 Wh/K m ²					
Normal usage time	45 hours/week					
Usage time, start at - end at, time	8 - 17					
	Calculation rules					
Calculation rules	BR: Actual conditions					
Suplement to energy frame	0,0 kWh/m² år					
	Heat supply and cooling					
Basic heat supply	District heating					
Electric panels	No					
Wood stoves, gas radiators etc.	No					
Solar heating plant	No					
Heat pumps	No					
Solar cells	No					
Wind mills	No					
Mechanical cooling	Yes					

	Room temperatures, set points					
Heating	20,0 °C					
Wanted	23,0 °C					
Natural ventilation	24,0 °C					
Mechanical cooling	25,0 °C					
Heating store	15,0 °C					
	Dimensioning temperatures					
Room temp.	20,0 °C					
Outdoor temp.	-12,0 °C					
Room temp. store	15,0 °C					

External walls, roofs and floors

11080 Group 10

External walls, roofs and floors								
Building component	Area (m ²)	U (W/m ² K)	b	Dim.Inside (C)	Dim.Outside (C)			
Floor towards terrain	1492,0	0,15	0,700	20	10			
Roof	1492,0	0,10	1,000	20	-12			
Wall - North	851,0	0,15	1,000	20	-12			
Wall - Southeast	1394,0	0,15 1,000		20	-12			
Wall - South	725,0	0,15	1,000	20	-12			
Wall - East	284,0	0,15	1,000	20	-12			
Wall - West	1383,0	0,15	1,000	20	-12			
Wall - Basement	696,0	0,19	0,700	20	10			
Ialt	8317,0	-	-	-	-			

Foundations etc.							
Building component	1 (m)	Loss (W/mK)	b	Dim.Inside (C)	Dim.Outside (C)		
Windows	12889,0	0,03	1,000	20	-12		
Roof	173,0	0,30	1,000	20	-12		
Pedestal	166,0 0,30 1,0		1,000	20	-12		
Foundation	171,0	0,30	1,000	20	10		
Walls towards cold basement	304,0	0,30	1,000	20	10		
Ialt	13703,0	-	-	-	-		

	Windows and outer doors												
Building component	Number	Orient	Inclination	Area (m ²)	U (W/m²K)	b	Ff (-)	g (-)	Shading	Fc (-)	Dim.Inside (C)	Dim.Outside (C)	Ext
North	1	15	90,0	934,0	0,70	1,000	0,75	0,37	North	1,00	20	-12	0
Southeast	1	120	90,0	872,0	0,70	1,000	0,75	0,37	East and West	1,00	20	-12	0
South	1	195	90,0	594,0	0,70	1,000	0,75	0,37	South	1,00	20	-12	0
West	1	285	90,0	1383,0	0,70	1,000	0,75	0,37	East and West	1,00	20	-12	0
Ialt	4	-	-	3783,0	-	-	-	-	-	-	-	-	

Shading										
Description	Horizon (°)	Eaves (°)	Left (°)	Right (°)	Window opening (%)					
North	15	0	0	0	10					
East and West	15	0	32	32	10					
South	15	0	17	17	10					

Summer comfort							
Floor area	0,0 m ²						
Ventilation, winther	0,3 l/s m ²						

	Summer comfort								
Ventilation, summer, 9- 16	0,9 l/s m ²								
Ventilation, summer, 17- 24	0,9 l/s m ²								
Ventilation, summer, 0-8	0,6 l/s m ²								

						Ventil	ation						
Zone	Area (m ²)	Fo, -	qm (l/s m ²), Winter	n vgv (-)	ti (°C)	El- HC	qn (l/s m ²), Winter	qi,n (l/s m ²), Winter	SEL (kJ/m ³)	qm,s (l/s m²), Summer	qn,s (l/s m ²), Summer	qm,n (l/s m ²), Night	qn,n (l/s m ²), Night
Offices	3906,0	1,00	1,20	0,84	18,0	No	0,08	0,04	0,8	1,20	0,08	0,70	0,04
Corridors	3396,0	1,00	0,80	0,84	18,0	No	0,08	0,04	0,8	0,80	0,08	0,70	0,04
Toilets	679,0	1,00	1,20	0,84	18,0	No	0,08	0,04	0,8	1,20	0,08	0,70	0,04
Meeting room - in use	1863,0	0,80	1,20	0,84	18,0	No	0,08	0,04	0,8	1,20	0,08	0,70	0,04
Meeting room - not in use	1863,0	0,20	1,20	0,84	18,0	No	0,08	0,04	0,8	1,20	0,08	0,70	0,04
Auditorium - in use	504,0	0,70	1,20	0,84	18,0	No	0,08	0,04	0,8	1,20	0,08	0,70	0,04
Auditorium - not in use	504,0	0,30	1,20	0,84	18,0	No	0,08	0,04	0,8	1,20	0,08	0,70	0,04
Sky bar - in use	679,0	0,80	1,20	0,84	18,0	No	0,08	0,04	0,8	1,20	0,08	0,70	0,04
Sky bar - not in use	679,0	0,20	1,20	0,84	18,0	No	0,08	0,04	0,8	1,20	0,08	0,70	0,04
Gym	911,0	1,00	1,20	0,84	18,0	No	0,08	0,04	0,8	1,20	0,08	0,70	0,04
Mixed	2547,0	1,00	1,17	0,84	18,0	No	0,08	0,04	0,8	1,17	0,08	0,70	0,04
Shower room	136,0	1,00	1,20	0,84	18,0	No	0,08	0,04	0,8	1,20	0,08	0,70	0,04
Kitchen (sky bar)	153,0	1,00	1,20	0,84	18,0	No	0,08	0,04	0,8	1,20	0,08	0,70	0,04
Cores, shaft, and basement	4161,0	1,00	0,70	0,84	18,0	No	0,08	0,04	0,8	0,70	0,08	0,70	0,04

Internal heat supply								
Zone	Area (m ²)	Persons (W/m ²)	App. (W/m ²)	App,night (W/m ²)				
Whole building	18953	4,0	6,0	0,0				

Lighting											
Zone	Area (m ²)	General (W/m ²)	General (W/m ²)	Lighting (lux)	DF (%)	Control (U, M, A, K)	Fo (-)	Work (W/m²)	Other (W/m ²)	Stand- by (W/m ²)	Night (W/m ²)
Offices	3906,0	0,2	3,3	300	2,00	K	1,00	1,0	0,0	0,2	0,0
Corridors	3396,0	0,2	1,1	100	0,50	K	1,00	0,0	0,0	0,2	0,0
Toilets	679,0	0,2	1,1	100	0,00	U	1,00	0,0	0,0	0,2	0,0
Meeting rooms	1863,0	0,2	5,6	500	1,00	K	0,80	0,0	0,0	0,2	0,0
Auditorium	504,0	0,2	5,6	500	0,10	A	0,70	0,0	0,0	0,2	0,0
Sky bar	679,0	0,2	6,7	100	0,50	K	0,80	0,0	0,0	0,2	0,0

11080 Group 10

Lighting											
Gym	911,0	0,2	3,3	300	0,20	K	1,00	0,0	0,0	0,2	0,0
Mixed	2547,0	0,2	2,2	200	0,20	K	1,00	0,0	0,0	0,2	0,0
Cores and shafts	4161,0	0,2	2,2	200	0,00	U	1,00	0,0	0,0	0,2	0,0
Shower room	136,0	0,2	2,2	200	0,00	U	1,00	0,0	0,0	0,2	0,0
Kitchen (sky bar)	153,0	0,2	5,6	500	1,50	K	1,00	0,0	0,0	0,2	0,0

	Other el. consumption								
Outdoor lighting	0,0 W								
Spec. apparatus, during service	0,0 W								
Spec. apparatus, always	0,0 W								

Basement car parkings etc.											
Zone	Area (m ²)	General (W/m ²)	General (W/m ²)	Lighting (lux)	DF (%)	Control (U, M, A, K)	Fo (-)	Work (W/m²)	Other (W/m ²)		Night (W/m ²)

	Mechanical cooling								
Description	Mechanical cooling								
Share of floor area	0,73								
El-demand	0,25 kWh-el/kWh-cool								
Heat-demand	0,00 kWh-heat/kWh-cool								
Load factor	1,2								
Heat capacity phase shift (cooling)	0 Wh/m ²								
Increase factor	1,50								
Documentation									

	Heat distribution plant								
Composition and temperature									
Supply pipe temperature	45,0 °C				DGNB de	emand			
Return pipe temperature	35,0 °C								
Type of plant	2-string				Anlægsty	pe			
Pumps									
Pump type	Description Number				Pnom			Fp	
Combi-pump (const. during heating season)	Pumps		2		200,0 W		0,40		
Combi-pump (const. during heating season)	Pumps - original (5 pumps)		0		1000,0 W			0,40	
			Heating p	oipes					
Pipe lengths in supply and return	1 (m)	Loss	s (W/mK)	() b		Outdoor comp (J/N)		Unused summer (J/N)	
Neassesary if we have a decentralized hot water tank!	0,0	0,00		0,000		N		J	

file:///C:/Users/anna/OneDrive/Dokumenter/DTU/8. semester/11080 Advanced Building Design/The Building - Low U-values.htm

Domestic hot water									
Description	Domestic hot water								
Hot-water consumption, average for the building	100,0 litre/year per m ² of floor are	ca							
Domestic hot water temp.	55,0 °C								
Hot-water tank									
Description	Hot water tanks								
Number of hot-water containers	1,0								
Tank volume	1000,0 liter								
Supply temperature from central heating	60,0 °C								
El. heating of DHW	No								
Solar heat tank with heating coil	No								
Heat loss from hot-water tank	1,8 W/K								
Temp. factor for setup room	0,0								
Charging pump									
Effect	0,0 W								
Controled	No								
Charge effect	0,0 kW								
	Heat loss from co	onnector pipe to DHW tank							
Length	Loss	b	Description						
	Cirkulati	ing pump for DHW							
Description	PumpCirc								
Number	5,0								
Effect	200,0 W								
Number	0,0								
Effect	0,0 W								
Reduction factor	1,00 [-]								
El. tracing of discharge water pipe	No								
	Domestic hot	t water discharge pipes							
Pipe lengths in supply and return	1 (m)	Loss (W/mK)	b						
Pipes for hot water	396,0	0,20	0,000						

Water heaters		
Electric water heater		
Description	Elvandvarmer	

Electric water heater			
Share of DHW in separate el. water heaters	0,0		
Heat loss from hot-water tank	0,0 W/K		
Temp. factor for setup room	1,00		
	Gas water heater		
Description	Gasvandvarmer		
Share of DHW in separate gas water heaters	0,0		
Heat loss from hot-water tank	0,0 W/K		
Efficiency	0,5		
Pilot flame	50,0 W		
Temp. factor for setup room	1,00		

District heat exchanger		
Description	Ny fjernvarmeveksler	
Nominal effect	360,0 kW	
Heat loss	5,0 W/K	
DHW heating through exchanger	No	
Exchanger temperature, min	60,0 °C	
Temp. factor for setup room	0,00	
Automatics, stand-by	5,0 W	

Other room heating		
Direct el for room heating		
Description	Suplemental direct room heating	
Share of floor area	0,0	
Wood stoves, gas radiators etc.		
Description		
Share of floor area	0,0	
Efficiency	0,4	
Air flow requirement	0,1 m ³ /s	

Solar heating plant		
New solar heating plant		
Domestic hot water		
Solar collector		
Start 0,8 -		

Solar collector		
Coefficient of heat loss a1 3,5 W/m ² K	Coefficient of heat loss a2 0,0 W/m ² K	Anglefactor 0,9
Orientation S	Slope 0,0 °	-
Horizon 10,0 °	Left 0,0 °	Right 0,0 °
Solar collector pipe		
Length 0,0 m	Heat loss 0,00 W/mK	Circuit 0,8
Electricity		
Pump in solar collector circuit 50,0 W	Automatics, stand-by 5,0 W	

Solar cells			
Description	Roof PV		
Solar cells			
Area 0,0 m ²	Orientation s	Slope 30,0 °	
Horizon 0,0 °	Left 0,0 °	Right 0,0 °	
Additional			
Peak power 0,160 kW/m ²	Efficiency 0,85		

Solar cells			
Description	Facade PV		
Solar cells			
Area 0,0 m ²	Orientation S	Slope 90,0 °	
Horizon 0,0 °	Left 0,0 °	Right 0,0 °	
Additional			
Peak power 0,160 kW/m ²	Efficiency 0,85		